
I 12d Ascii File Format
The 12d Ascii file format (called 4D Ascii in Version 4 and earlier) is a text file definition from
12D Solutions which is used for reading and writing out string data from 12d Model. 12d Ascii
files normally end in ’.12da’

This document is for the 12d Ascii file format used in 12d Model Version 9.

For General Comments about 12da, go to the section “General Comments about 12d Ascii File”

For the 12da definitions of Attributes go to “Attributes”
Commands “Commands”
12d string types “12d Ascii Definition for each String Type”
12d tins “12d Ascii Definition for Tins”
12d plot frames “12d Ascii Definition for Plot Frames”

General Comments about 12d Ascii File
//

Anything written on a line after // is ignored. This is used to place comments in the file.

Blank lines

Unless they are part of a text string, blank lines are ignored.

Spaces

Unless enclosed in quotes ("), more than one consecutive space or tab is treated as one
space. Except when it is the delimiter after a //, an end of line (<enter>) is also considered a
space.

Spaces and special characters in text strings

Any text string that includes spaces and any characters other than a to z, A to Z or 0 to 9
(alphanumeric), must be enclosed in double quotes. In text strings, double quotes " and
backslash \ must be preceded by a \. For example, \" and \\ define a " and a \ respectively in a
text string.

Names of models, tins, styles, colours and attributes

Models, tins, styles (linestyles), colours and attributes can include the characters a to z, A to
Z, 0 to 9 (alphanumeric characters) and space. Leading and trailing spaces are ignored. The
names can be up to 255 characters in length. If the name includes spaces, the name must be
enclosed in double quotes (").

The names for models, tins, styles, colours or attributes can not be blank.

The names for models, tins, styles and colours can contain upper and lower alpha characters
which are stored, but the set of model names, tin names, style names, colour names or
attribute names for an object must be unique when case is ignored. For example, the model
name "Fred" will be stored as "Fred" but "FRED" is considered to be the same model name as
"Fred".

String names

String names can include the characters a to z, A to Z, 0 to 9 (alphanumeric characters),
space, decimal point (.), plus (+), minus (-), comma (,), open and closed round brackets and
March 2011 Page 4043General Comments about 12d Ascii File

12d Model Reference Manual
equals (=). Leading and trailing spaces are ignored. String names can be up to 255
characters in length. If the string name includes anything other than alphanumeric characters,
then the name must be enclosed in double quotes (").

String can contain upper and lower alpha characters which are retained but case is ignored
when selecting by string name. That is, the string name "Fred" will be stored as "Fred" but
"FRED" is not considered to be a different name.

String names do not have to be unique and can be blank.

Please continue to the next section “Attributes” .
Page 4044 March 2011General Comments about 12d Ascii File

Appendix I
Attributes
Many 12d Model objects (such as individual strings, models and tins) can have an unlimited
number of named attributes of type integer (numbers), real and text. Within an object, the
attribute names must all be different.

The attributes for an object are given inside the curly braces of the object definition. The
attributes are preceded by the attributes keyword followed by the named attributes enclosed in
curly braces { and }.

The format for each named attribute is

attribute_type attribute_name attribute_value

where attribute_type is integer, real or text
attribute_name is the unique attribute name for the object

and attribute_value is the either a number, a real or a text string.

That is the attributes are defined in a block:

attributes {
 integer att_name number
 real att_name value
 text att_name text
}

The text for a text attribute can be blank an if so, is defined as "".

An example of defining attributes is:

attributes {
text "pole id" "QMR-37"
text street "477 Boundary St"
real "pole height" 5.25
integer "pole wires" 3

}

Please continue to the next section “Commands” .
March 2011 Page 4045Attributes

12d Model Reference Manual
Commands
Commands consist of a keyword followed by a space and then a value (a keyword and its
value is often referred to as a keyword pair). A value must always exist.

keyword value // a keyword pair

There can be more than on command keyword pair per line as long as each keyword pair is
separated by a space. In fact, the keyword can be on one line and the value on the next line.

Although the names of commands are only shown in lower case in these notes, commands
are case insensitive and all combinations of case are recognised as the same command.
That is ’model’, ’MODEL’ and ’ModeL’ are all recognised as the command ’model’.

The commands in the 12d Ascii file are:

model model_name // system default data

All strings following until the next model keyword are placed in the model model_name. This
can be overridden for a string by a model command inside the string definition.

If the model includes attributes, the following model definition must be used.

model {
 name model_name
 ...
}

All 12d Model models can have an unlimited number of named attributes of type integer
(numbers), real and text. Within a model, the attribute names must all be different.

The definition for a model with attributes is the model keyword followed by information
enclosed in curly braces { and }. The keyword name followed by the model_name must be
included inside the curly braces.

name model_name

The attributes for the model are also specified inside the curly braces of the model definition.
As described previously, the attributes are preceded by the attribute keyword followed by the
named attributes enclosed in curly braces { and }.

Hence the model definition with attributes is:

model {

name model_name
attributes {

 attribute_type attribute_name attribute_value
 attribute_type attribute_name attribute_value
 ...
 attribute_type attribute_name attribute_value
}

}

For example:

model {
name "telegraph poles"

attributes {
text "pole id" "QMR-37"
text "street" "477 Boundary St"
real "pole height" 5.25
integer "pole wires" 3

}

Page 4046 March 2011Commands

Appendix I
}

colour colour_name // system default red

All strings following until the next colour keyword have colour colour_name. This can be
overridden for a string by a colour command in the string definition.

style style_name // system default 1

All strings following until the next style keyword have style style_name. This can be overridden
for a string by a style command in the string definition.

breakline point or line // system default line

All strings following that requires a breakline point-line type until the next breakline keyword,
have this point-line type. This may be overridden for the string by a breakline in the string
definition.

null value // system default -999

All z-values equal to value in strings following until the next null keyword, are considered to be
null z-values.

string string_type {
 ...
}

The string_type is compulsory and must be followed by all the string information enclosed in
curly braces { and }.

Thus if a string type or possibly information inside the string is not recognised, the 12d Ascii
reader has a chance of being able to jump over the string by looking for the end marker }.

Inside the braces are string commands as keyword pairs defining some information for the
string.

There can be more than one string command keyword pair per line as long as each keyword
pair is separated by a space. In fact, the keyword can be on one line and the value on the
next line.

Any unrecognized string commands are ignored.

The string command keyword pairs include model, colour, style and breakline which are all
optional inside the string definition. However if any of them exist inside a string definition, then
the string command keyword overrides any model, colour, style or breakline commands but
only for that particular string.

For some string types (e.g. 2d, 3d, pipe) there is more data required than just the string
command keyword pairs.

This extra data is contained is blocks consisting of a keyword followed by the required
information enclosed in curly braces { and }. For example attributes for all string types and
(x,y) data for a 2d string.

For all string types, if there is not enough recognised information to define the string, the
string is ignored.

The definition of each string type and the allowed string commands and extra data for that
string type will be given after the next section on string attributes.

string attributes
 All 12d Model strings can have an unlimited number of named attributes of type integer
(numbers), real and text. Within a string, the attribute names must all be different.
The attributes for a string are given inside the curly braces of the string definition. As
described previously, the attributes are preceded by the attributes keyword followed by the
named attributes enclosed in curly braces { and }.

Please continue to the next section “12d Ascii Definition for each String Type” .
March 2011 Page 4047Commands

12d Model Reference Manual
12d Ascii Definition for each String Type
For the 12da definitions of 2d string go to “2d String”

3d string “3d String”
4d string “4d String”
Alignment string “Alignment String”
Arc string “Arc String”
3d string “4d String”
drainage string “Drainage String”
face string “Face String”
feature string “Feature String”
interface string “Interface String”
pipe string “Pipe String”
polyline string “Polyline String”
text string “Text String”
super string “Super String”
super alignment string “Super Alignment String”

2d String
string 2d {
z value chainage start_chainage
model model_name name string_name
colour colour_name style style_name
breakline point or line
data { // keyword

 x-value y-value
 " "
 " "
}

}

3d String
string 3d {
chainage start_chainage
model model_name name string_name
colour colour_name style style_name
breakline point or line
data { // keyword

 x-value y-value z-value
 " " "
 " " "
}

}

4d String
string 4d {
angle value offset value raise value
Page 4048 March 201112d Ascii Definition for each String Type

Appendix I
worldsize value or papersize value or screensize value
chainage start_chainage
model model_name name string_name
colour colour_name style style_name
breakline point or line
textstyle text slant degrees xfactor value
justify "top|middle|bottom-left|centre|right"
data { // keyword

 x-value y-value z-value text // text can not be blank
 " " " " // use "" for no text.
 " " " "

}
}

March 2011 Page 404912d Ascii Definition for each String Type

12d Model Reference Manual

.

l

Alignment String
In an alignment string the horizontal and vertical geometry are given separately and both can
only be defined by the intersection point method (IP’s).

For the horizontal geometry, the (x,y) position of the horizontal intersection points (HIPs) are
given in the order that they appear in the string, plus the circular radius and left and right
transition lengths on each HIP.

Hence a horizontal intersection point is given by either

x-value y-value radius // circular curve, no transition
or

x-value y-value radius spil1 left-transition-length spil2 right-transition-length

radius, left-transition-length, right-transition-length can be zero (meaning they don't exist).

For the vertical geometry, the (chainage,height) position of the vertical intersection points (VIPs)
are given in increasing chainage order, plus either the radius of the circular arc or the length of
the parabolic curve on each VIP.

Hence for a vertical intersection point is given by either

ch_value z-value length parabola
 or

ch_value z-value radius circle
where

the word parabola is optional. length and radius can be zero, meaning that the parabola or arc
doesn't exist.

string alignment {
model model_name name string_name
colour colour_name style style_name
chainage start_chainage interval value
draw_mode value // 1 to draw crosses at HIPs and VIPs, 0 don’t draw
spiral_type text // spiral_type covers both spiral and non-spiral transitions

// For an alignment string, the supported transition types
// are clothoid, cubic parabola, westrail-cubic, cubic spira
// More transition are supported in the super alignment
//

hipdata { // some hips must exist and precede the VIP data
 x-value y-value radius // or
 x-value y-value radius spil1 left-transition-length spil2 right-transition-length
 " " " " " " "
}
vipdata { // vips optional

 ch_value z-value parabolic-length // or
 ch_value z-value parabolic-length parabola // or
 ch_value z-value radius circle
 " " " "
}

}

Page 4050 March 201112d Ascii Definition for each String Type

Appendix I
Arc String
string arc {

model model_name name string_name
colour colour_name style style_name
chainage start_chainage interval value radius value
xcentre value ycentre value zcentre value
xstart value ystart value zstart value
xend value yend value zend value

}

Circle String
string circle {

model model_name name string_name
colour colour_name style style_name
chainage start_chainage interval value radius value
zcentre value xcentre value ycentre value

}

Drainage String
string drainage {

chainage start_chainage
model model_name name string_name
colour colour_name style style_name
breakline point or line
attributes {

text Tin finished_surface_tin
text NSTin natural_surface_tin
integer "_floating" 1|0 // 1 for floating, 0 not floating

}
outfall outfall_value // z-value at the outfall
flow_direction 0|1 // 0 drainage line is defined from downstream

// to upstream

data { // key word - geometry of the drainage string
 x-value y-value z-value radius bulge
 " " "
 " " "

}
pit { // pit/manhole - one pit record for each pit/manhole

// in the order along the string
 name text // pit name
 type text // pit type
 road_name text // road name
 road_chainage chainage // road chainage
 diameter value // pit diameter
 floating yes|no // is pit floating or not
 chainage pit_chainage // internal use only
 ip value // internal use only
 ratio value // internal use only
 x x-value // x-value of top of pit
 y y-value // y-value of top of pit
 z z-value // z-value of top of pit

}

March 2011 Page 405112d Ascii Definition for each String Type

12d Model Reference Manual
pipe { // one pipe record for each pipe connecting pits/manholes
// in the order they occur along the string

 name text // pipe name
 type text // pipe type
 diameter value // pit diameter
 us_level value //
 ds_level value //
 us_hgl value //
 ds_hgl value //
 flow_velocity value //
 flow_volume value //
}
property_control {

 name text // lot name
 colour colour_name
 grade value // grade of pipe in units of "1v in"
 cover value // cover of the of pipe
 diameter value // diameter of the of pipe
 boundary value // boundary trap value
 chainage chainage // internal use only
 ip value // internal use only
 ratio value // internal use only
 x x-value // x value of where pipe connects to sewer
 y y-value // y value of where pipe connects to sewer
 z z-value // internal use only

 data { // key word - geometry of the property control
 x-value y-value z-value radius bulge
 " " "
 " " "
}
house_connection { // warning - house connections may change in future versions

 name text // house connection name
 hcb integer // user given integer
 colour colour_name
 grade value // grade of connection in units of "1v in"
 depth value
 diameter value
 side left or right
 length value
 type text // connection type
 material text // material type
 bush text // bush type
 level value
 adopted_level value
 chainage chainage // internal use only
 ip value // internal use only
 ratio value // internal use only
 x x-value // x value of where pipe connects to sewer
 y y-value // y value of where pipe connects to sewer
 z z-value // internal use only
}

} // end of drainage-sewer data

Face String
Page 4052 March 201112d Ascii Definition for each String Type

Appendix I
string face {
model model_name name string_name
colour colour_name style style_name
chainage start_chainage breakline point or line
hatch_angle value
hatch_distance value
hatch_colour colour
edge_colour colour
fill_mode 0 or 1
edge_mode 0 or 1
data { // keyword

 x-value y-value z-value
 " " "

}
}

Feature String
string feature {

model model_name name string_name
colour colour_name style style_name
chainage start_chainage interval value radius value
zcentre value xcentre value ycentre value

}

Interface String
string interface {

chainage start_chainage
model model_name name string_name
colour colour_name style style_name
breakline point or line
data { // keyword

 x-value y-value z-value mode
 " " " " // mode = -1 cut
 " " " " // 0 surface

} // 1 fill
}

Pipe String
string pipe {

diameter value chainage start_chainage
model model_name name string_name
colour colour_name style style_name
breakline point or line
data { // keyword

 x-value y-value z-value
 " " "
 " " "

}
}

Pipeline String
March 2011 Page 405312d Ascii Definition for each String Type

12d Model Reference Manual
This is the same as an alignment string except that it has the additional keywords

diameter, which gives the diameter of the pipeline in world units
and

length of the typical pipe making up the pipeline (used for deflections).

string pipeline {
model model_name name string_name
colour colour_name style style_name
diameter diameter length pipe-length
chainage start_chainage interval value
spiral_type text // spiral_type covers both spiral and non-spiral transitions

// supported by 12d. For an alignment string, the
// supported transition types are clothoid, cubic parabola,
// westrail-cubic, cubic spiral. Other transition types
// are supported in the super alignment

hipdata { // some hips must exist and precede vips
 x-value y-value radius // or
 x-value y-value radius spil1 left-transition-length spil2 right-transition-length
 " " " " " " "
}
vipdata { // vips optional

 ch-value z-value parabolic-length // or
 ch-value z-value parabolic-length parabola // or
 ch-value z-value radius circle
 " " " "
}

}

Polyline String
The definition of a closed string has been refined for polyline and super strings. For other string
types, closing a string simply meant having the first vertex the same as the last vertex. Hence the
vertex was duplicated.

For a polyline string, being closed is a property of the string and no extra vertex is needed - the
first and the last vertices are not the same and the polyline string knows there is an additional
segment from the last vertex back to the first vertex.

In the 12d ascii format, there is a new closed flag for the polyline string:

 closed true or false

where true can be 1 or T or t or Y or y (or words starting with T, t, Y or y))
and false is 0 or F or f or N or n (or words starting with F, f, N or n.

string polyline {
chainage start_chainage
model model_name name string_name
colour colour_name style style_name
breakline point or line
closed true or false

data { // keyword
 x-value y-value z-value radius bulge_flag
 " " "
 " " "
}

}

Page 4054 March 201112d Ascii Definition for each String Type

Appendix I
Text String
string text {

x value y value z value
model model_name name string_name colour colour_name
text text_value
angle value offset value raise value
textstyle textstyle_name slant degrees xfactor value
worldsize value or papersize value or screensize value
justify "top|middle|bottom-left|centre|right"

}

March 2011 Page 405512d Ascii Definition for each String Type

12d Model Reference Manual
Super String
Because the super string is so versatile, its 12d Ascii format looks complicated but it is very
logical and actually quite simple.

In its most primitive form, the super string is simply a set of (x,y) values as in a 2d string, or (x,y,z)
values as in a 3d string, or (x,y,z,radius,bulge_flag) as for a polyline string or even lines, arcs and
transitions (spirals and non-spiral transitions).

Additional blocks of information can extend the definition of the super string. For example, text,
pipe diameters and visibility.

Some of the properties of the super string extend what were constant properties for the entire
string in other string types. For example, breakline type for the string extends to tinability of
vertices and segments. One colour for the string extends to individual colours for each segment.

Other properties such as vertex id’s (point numbers), visibility and culvert data are entirely new.

For user attributes, the super string still has the standard user attributes defined for the entire
string, but user attributes for each vertex and segment are also supported.

The definition of a closed string has been refined for polyline and super strings. For other string
types, closing a string simply meant having the first vertex the same as the last vertex. Hence the
vertex was duplicated.

For a super string, being closed is a property of the string and no extra vertex is needed. That is,
the first and the last vertices are not the same for a closed super string and the super string
knows there is an additional segment from the last vertex back to the first vertex.

Hence in the 12d ascii format, there is a closed flag for the super string:

 closed true or false

where true can be 1 or T or t or Y or y (or words starting with T, t, Y or y))
and false is 0 or F or f or N or n (or words starting with F, f, N or n.

Thus if a string has n vertices, then an open string has n-1 segments joining the vertices and a
closed string has n segments since there is an additional segment from the last to the first vertex.

With the additional data for vertices and segments in the super string, the data is in vertex or
segment order. So for a string with n vertices, there must be n bits of vertex data. For segments,
if the string is open then there only needs to be n-1 bits of segment data but for closed strings,
there must be n bits of data. For an open string, n bits of segment data can be specified and the
nth bit will be read in and stored. If the string is then closed, the nth bit of data will be used for the
extra segment.
Page 4056 March 201112d Ascii Definition for each String Type

Appendix I
The full 12d Ascii definition of the super string is:

string super {
chainage start_chainage
model model_name name string_name
colour colour_name style style_name
breakline point or line
closed true or false
interval {

chord_arc value // chord-to-arc tolerance for curves
distance value // chainage interval to break the geometry up

}

block of info {
}
block of info {
}
block of info {
}

}

The blocks of info can be broken up into four types.

(a) blocks defining the position of the vertices in z, y and z

data_2d or data_3d

Vertices and Segments Forming the Super String

first
second

vertex 3

vertex 4

vertex 5
vertex 6

vertex n-1

vertex n

vertex

first segment
(a straight)

second segment
(an arc)

segment 3
(a straight)

segment 4
(a transition)

segment 5
(an arc)

segment n-1
(a straight)

vertex

segment n
(only if the string is closed)
March 2011 Page 405712d Ascii Definition for each String Type

12d Model Reference Manual
(b) blocks defining the geometry of the segments

radius_data and major_data or geometry_data

(c) a superseded block defining vertices and segment geometry

data

(d) extra information for the vertices and/or segments

pipe diameters - diameter_value or diameter_data
culvert dimensions - culvert_value or culvert_data
pipe/culvert justification - justify
colour - colour or colour_data
vertex ids (point numbers) at each vertex- point_data
tinability - breakline or vertex_tinability_data and segment_tinability_data
visibility - vertex_visible_data and segment_visible_data
vertex text and annotation - vertex_text_data and vertex_annotation_data
segment text and annotation - segment_text_data and segment_annotation_data
symbols at vertices - symbol_value or symbol_data
vertex attributes - vertex_attribute_data
segment attributes - segment_attribute_data
extrudes
image data
holes

The definition for the blocks of each type now follows.

(a) Blocks Defining the Position of the Vertices

For (x, y) Values with a Constant z

If there is only (x,y) values at each vertex (like a 2d string):

data_2d { // keyword
 x-value y-value
 " "
 " "
}

and if there is a non-null constant z for the string

z value

For (x,y,z) Values

If there is (x,y,z) values at each vertex (like a 3d string):

data_3d { // keyword
 x-value y-value z-value
 " " "
 " " "
}

(b) Blocks Defining the Geometry of the Segments

Straights and Arcs Only for the Segments

If data_2d or data_3d was used, it is possible to add radius and bulge_flag data:

radius_data { // keyword
 radius for first segment
 radius for second segment
Page 4058 March 201112d Ascii Definition for each String Type

Appendix I
 ...
 radius for last segment

}

major_data { // keyword
 bulge flag for first segment
 bulge flag for second segment
 ...
 bulge flag for last segment

}

Straights, Arcs and Transitions (Spiral and non-Spiral Transitions) for the Segments

If data_2d or data_3d was used, it is possible to specify if the segments are straight, arcs or
transitions using a geometry_data block.

geometry_data {
segment_info_1 {

information on the first segment
}
segment_info_2 {

information on the second segment
}

" "
" "

segment_info_n-1 { // the last segment if it is open
information on the (n-1) segment

}
segment_info_n { // the last segment if it is closed

information on the n-th segment
}

}

where the segment_info blocks are from the following:

(a) Straight

No parameters are needed for defining a straight segment. The straight block is simply:

straight { // no parameters are needed for a straight
}

(b) Arc

There are four possibilities for an arc of a given radius placed between two vertices.

We use positive and negative radius, and a flag major which can be set to 1 (on) or off (0) to
differentiate between the four possibilities.
March 2011 Page 405912d Ascii Definition for each String Type

12d Model Reference Manual
So the arc block is:

arc {
radius value // radius of the arc (+ve is above the line connecting the vertices)
major 0 or 1 // 0 is the smaller arc, 1 the larger arc).

}

(c) Spiral - this covers both spiral and non-spiral transitions

There can be a partial transition between adjacent vertices. The partial transition is defined by
the parameters

l1 length of the full transition up to the start vertex
r1 radius of the transition at the start vertex
a1 angle in decimal degrees of the tangent to the transition at the start vertex
l2 length of the full transition up to the end vertex
r2 radius at the end vertex
a2 angle in decimal degrees of the tangent to the transition at the end vertex

Since a radius can not be zero, a radius of infinity is denoted by zero.

The transition is said to be a leading transition if the absolute value of the radius is increasing
along the direction of the transition (the transition will tighten). Otherwise it is a trailing
transition.

If a leading transition is a full transition then r1 = 0 and l1 = 0. Similarly if a trailing transition is
a full transition then r2 = 0 and l2 = 0.

For a partial transition, if the coordinates of the start of the full transition are needed then they
can be calculated from l1,r1,a1, l2,r2,a2 and the co-ordinates of the start and end vertices.

Note that the radii can be positive or negative. If the radii’s are positive then a leading
transition will curl to the right (and will be above the line joining the start and end vertices).

Arc with major 1 (on)

Arc with major 0 (off) (default)

Arcs with same radius but with major on or off

start
vertex

end
vertex

Arc with major 1 (on)

Arc with major 0 (off) (default)

Arcs with +ve radius

Arcs with -ve radius
Page 4060 March 201112d Ascii Definition for each String Type

Appendix I
The parameters for the spiral block are:

spiral {
type value // type can be clothoid, cubic parabola, westrail-cubic,

// cubic spiral, natural clothoid, bloss,
// bloss, sinusoidal, cosinusoidal

leading 1 or 0 // 1 denotes a leading transition, 0 a trailing transition
l1 value // length of the full transition at start vertex
r1 value // radius at the start vertex
a1 value // angle in decimal degrees of the tangent to the transition

// at the start vertex
l2 value // length of the full transition at end vertex
r2 value // radius at end vertex
a2 value // angle in decimal degrees of the tangent to the transition

// at the end vertex
}

Notes

1. The spiral block covers both spiral and non-spiral transitions.

2. The transitions/spirals supported by 12d Model are:

Clothoid - spiral approximation used by Australian road authorities and Queensland Rail.

Cubic parabola – special transition curve used by NSW railways. Not a spiral.

Westrail cubic – spiral approximating used by WA railways.

Cubic spiral – low level spiral approximation. Only ever used in surveying textbooks.

Natural Clothoid – the proper Euler spiral. Not used by any authority.

Bloss – special transition used by Deutsche Bahn. Not a spiral.

Sinusoidal - special transition. Not a spiral.

l2 - l1 = the length of transition
from the start vertex to
the end vertex

start
vertex

end
vertex

partial transition segment between
the super alignment vertices

Example of a Leading Partial Transition with Positive Radii
i.e. radius increases along the transition

start of full transition
(radius of "infinity"
but will be denoted
as a radius of 0)

l1 = length of the
full transition before
the start vertex

r1 = radius at
start vertex

r2 = radius at
end vertex

l2 = length of the
full transition up to
end vertex

a2 = angle of the tangent
to the transition at end vertex

a1 = angle of the tangent
to the transition at start vertex
March 2011 Page 406112d Ascii Definition for each String Type

12d Model Reference Manual
Cosinusoidal - special transition. Not a spiral.

(c) Block Defining the Vertices and Segments
For compatibility with the polyline, the data block gives the (x,y,z,radius,bulge) values at each
vertex of the string and so defines both the vertices and the geometry of the segments in the one
block.

data { // keyword
 x-value y-value z-value radius bulge
 " " "
 " " "
}

(d) Other Blocks

Pipe Diameters

There can be one pipe diameter value for the entire super string or the pipe diameter varies for
each segment of the super string.

diameter_value value
or

diameter_data { // keyword
 pipe diameter for first segment
 pipe diameter for second segment
 ...
 pipe diameter for last segment
}

Culvert Dimensions

There can be one culvert width and height for the entire super string or the culvert width and
height vary for each segment of the super string.

culvert_value {
width value
height value

}
or

culvert_data { properties {width value // width and height for first segment
 height value
 }
 properties {width value // width and height for second segment
 height value
 }

...
 properties {width value // width and height for last segment
 height value
 }
}

Justification for Pipe or Culverts

There can be only one justification for the pipe or culvert for the entire super string.

justify justification // bottom or invert
// top or obvert
Page 4062 March 201112d Ascii Definition for each String Type

Appendix I
// centre (default)

Colour

There can be one colour for the entire super string which is given by the colour command at
the beginning of the string definitions (before the blocks of information) or the colour varies for
each segment of the super string and is specified in a colour_data block.

colour_data { // keyword
 colour for first segment
 colour for second segment
 ...
 colour for last segment

}

Vertex Id’s (Point Numbers)

Each vertex can have a vertex id (point number). This is not the order number of the vertex in the
string but is a separate id which is usually different for every vertex in every string. The vertex id
can be alphanumeric.

point_data { // keyword
 vertex id or first vertex // alphanumeric
 vertex id for second vertex
 ...
 vertex id for last vertex

}

Tinability

For a super string, the concept of breakline has been extended to a property called tinable which
can be set independently for each vertex and each segment of the super string.

If a vertex is tinable, then the vertex is used in triangulations. If the vertex is not tinable, then the
vertex is ignored when triangulating.

If a segment is tinable, then the segment is used as a side of a triangle during triangulation. This
may not be possible if there are crossing tinable segments.

vertex_tinable_data { // keyword
 tinable flag for first vertex // 1 for tinable
 tinable flag for second vertex // 0 for not tinable
 ...
 tinable flag for last vertex

segment_tinable_data { // keyword
 tinable flag for first segment // 1 for tinable
 tinable flag for second segment // 0 for not tinable
 ...
 tinable flag for last segment

}
Note that even if a segment is set to tinable, is can only be used if both its end vertices are also
tinable.

Visibility

For a super string, the concept of visibility and invisibility for vertices and segments has been
introduced.
March 2011 Page 406312d Ascii Definition for each String Type

12d Model Reference Manual
vertex_visible_data { // keyword
 visibility flag for first vertex // 1 for visible
 visibility flag for second vertex // 0 for invisible
 ...
 visibility flag for last vertex
}

segment_visible_data { // keyword
 visibility flag for first segment // 1 for visible
 visibility flag for second segment // 0 for invisible
 ...
 visibility flag for last segment
}

Vertex Text and Vertex Annotation

There can be the same piece of text for every vertex in the super string or a different text for each
vertex of the super string. How the text is drawn is specified by vertex annotation values. Note
that in vertex annotations, all vertices must be either worldsize or all vertices papersize. That is,
worldsize and papersize can not be mixed - the first one found is used for all vertices.

vertex_text_value text
or

 vertex_text_data { // keyword
 text for first vertex // text string, enclose
 text for second vertex // by "" if there are any
 ... // spaces in the text string
 text for last vertex
}

vertex_annotate_value { // keyword
 angle value offset value raise value
 textstyle textstyle_name slant degrees xfactor value

worldsize value or papersize value or screensize value
 justify "top|middle|bottom-left|centre|right"

colour colour_name
}

or

vertex_annotate_data { // keyword
 properties { angle value offset value raise value
 textstyle textstyle slant degrees xfactor value

 worldsize value or papersize value or screensize value
 justify "top|middle|bottom-left|centre|right"

 colour colour_name
 }
 properties { text properties second vertex
 }

 properties { ...
 }
 properties { text properties for last vertex
 }
}

 Segment Text and Segment Annotation

There can be the same piece of text for every segment in the super string or a different text for
each segment of the super string. How the text is drawn is specified by segment annotation
Page 4064 March 201112d Ascii Definition for each String Type

Appendix I
values. Note that in segment annotations, all segments must be either worldsize or all segments
papersize. That is, worldsize and papersize can not be mixed - the first one found is used for all
segments. However, vertex text and segment text do not both have to be papersize or worldsize.

 segment_text_value text
or

 segment_text_data { // keyword
 text for first segment // text string, enclose
 text for second segment // by "" if there are any
 ... // spaces in the text string
 text for last segment

}

 segment_annotate_value { // keyword
 angle value offset value raise value
 textstyle textstyle slant degrees xfactor value

worldsize value or papersize value or screensize value
 justify "top|middle|bottom-left|centre|right"

colour colour_name
}

or

 segment_annotate_data { // keyword
 properties { angle value offset value raise value
 textstyle textstyle slant degrees xfactor value

worldsize value or papersize value or screensize value
 justify "top|middle|bottom-left|centre|right"

 colour colour_name
 }
 properties { text properties second segment

 }
 properties { ...

 }
 properties { text properties for last segment
 }

}

Symbols

There can be the same symbol (defined as a linestyle) for every vertex in the super string or a
different symbol for each vertex of the super string. If a symbol does not have a colour, then it
uses the string colour or the segment colour.

symbol_value { // keyword
 style linestyle_name colour colour_name size value
 rotation value // in dms

offset value raise value
}

or

 symbol_data { // keyword
 properties { style linestyle_name colour colour_name size value
 style linestyle colour colour size value
 rotation value // in dms

offset value raise value
 }
 properties { symbol and properties for second vertex
 }
 properties { ...
March 2011 Page 406512d Ascii Definition for each String Type

12d Model Reference Manual
 }
 properties { symbol and properties for last vertex
 }
}

Vertex Attributes

Each vertex can have one or more user defined named attributes.

vertex_attribute_data { // key word
 attributes { attribute_type attribute_name attribute_value
 attribute_type attribute_name attribute_value
 ...

 attribute_type attribute_name attribute_value
 }
 attributes { named attributes for second vertex
 }
 attributes { ...
 }
 attributes { named attributes for last vertex
 }
}

Segment Attributes

Each segment can have one or more user defined named attributes.

segment_attribute_data { // keyword
 attributes { attribute_type attribute_name attribute_value

 attribute_type attribute_name attribute_value
 ...

 attribute_type attribute_name attribute_value
 }
 attributes { named attributes for second segment
 }
 attributes { ...
 }
 attributes { named attributes for last segment
 }
 }
Page 4066 March 201112d Ascii Definition for each String Type

Appendix I
Super Alignment String
In an alignment string, only the intersection point method (IP’s) could be used to construct the
horizontal and vertical geometry. The IP definition is actually a constructive definition and the
tangents points and segments between the tangent points (lines, arcs, transitions etc.) are
calculated from the IP definition. For an alignment string, only the IP definitions are included in
the 12d ascii file.

For a super alignment, the horizontal and vertical geometry are also defined separately and
with construction definitions but the construction definition can be much more complex than just
IP’s. For example, an arc could be defined as being tangential to two offset elements, or
constrained to go through a given point.

If the horizontal construction methods are consistent then the horizontal geometry can be solved,
and the horizontal geometry expressed in terms of consecutive segments (lines, arcs,
transitions) that are easily understood and drawn.

Similarly if the vertical construction methods are consistent then the vertical geometry can be
solved, and the vertical geometry expressed in terms of consecutive segments (lines, arcs,
parabolas) that are easily understood and drawn.

Unlike the alignment, the super alignment stores both the construction methods (the parts)
and the resulting vertices and segments (lines, arcs, transitions etc.) that make up the
horizontal and vertical geometry (the data).

For many applications such as uploading to survey data collectors or machine control devices,
only the horizontal data and the vertical data are required, not the construction methods (i.e.
the horizontal and vertical parts). When reading the 12d Ascii of a super alignment, only the
horizontal and vertical data needs to be read in and the constructive methods (the horizontal
and vertical parts) can be skipped over.

Vertices and Segments Forming the
Horizontal Data for a Super Alignment

first
second

vertex 3

vertex 4

vertex 5
vertex 6

vertex n-1

vertex n

vertex

first segment
(a straight)

second segment
(an arc)

segment 3
(a straight)

segment 4
(a transition)

segment 5
(an arc)

segment n-1
(a straight)

vertex

segment n
(only if the string is closed)
March 2011 Page 406712d Ascii Definition for each String Type

12d Model Reference Manual

Notes

1. Just using the horizontal and vertical data is valid as long as the super alignment
geometry is consistent (and solves) and the horizontal and vertical parts can be created.

There are flags in the 12d Ascii of the super alignment to say that the horizontal and vertical
geometry is consistent and solves.

2. Segments meeting at a common vertex do not have to be tangential although for most road
and rail applications, they should be.

The full 12d Ascii definition of the super alignment is:

string super_alignment {
//
name string_name
chainage start_chainage
colour colour_name
style style_name
breakline point or line
closed true or false
spiral_type transition_type // the spiral_types are clothoid,

// cubic parabola, westrail-cubic, cubic spiral,
// natural clothoid, bloss, sinusoidal and
// cosinusoidal. Note that some spiral_type’s
// are non-spiral transitions

valid_horizontal true or false // if true then the horizontal geometry
// is consistent and solves

valid_vertical true or false // if true then the horizontal geometry
// is consistent and solves

block of info {
}

block of info {
}

block of info {
}

} // end of super alignment

where the block of info can be one of more of:

attributes, horizontal_parts, horizontal_data, vertical_parts, vertical_data.

The attributes block has been described in the earlier section “Attributes” .

The structure of the blocks horizontal_parts, horizontal_data which define the horizontal
geometry, and vertical_parts and vertical_data which define the vertical geometry will now be
described in more detail.

For information on horizontal geometry, go to “Horizontal Geometry”
vertical geometry “Vertical Geometry”
Page 4068 March 201112d Ascii Definition for each String Type

Appendix I
Horizontal Geometry
The horizontal geometry is described by two blocks - the horizontal_parts block and the
horizontal_data block.

The horizontal_parts block contains the methods to construct the horizontal geometry such as
float (fillet) an arc of a certain radius between two given lines or create a transition (spiral or non-
spiral transition) between a line and an arc.

If the horizontal construction methods are consistent, then they can be solved to form a string
made up of lines, arcs and transitions. The horizontal_data block is simply a list of the vertices
and segments (lines, arcs etc.) that make up the solved geometry.

If the geometry in the horizontal_parts can be solved and produces a valid horizontal_data block,
then the flag valid_horizontal in the super_alignment block is set to true.

valid_horizontal true or false //true if the horizontal geometry can be solved and
// hence create a valid horizontal_data

horizontal_parts {/ / methods for creating the horizontal geometry
....

}

horizontal_data { // the horizontal segments that make up the solved geometry
....

}

For information on horizontal_parts, go to the section “Horizontal_parts”
horizontal_data “Horizontal_data”

Horizontal_parts

The horizontal_parts block describes the methods used to construct the horizontal geometry of
the super alignment. The parts that make up the horizontal geometry are defined in chainage
order from the start to the end of the super alignment.

horizontal_parts { // methods for creating the horizontal geometry
blocks defining the sequential parts
making up the horizontal geometry

}

Apart from the special case of parts defined by horizontal intersection points and their
accompanying transitions and arcs, the other parts in the horizontal_parts block are not
documented.

Horizontal_parts for defined by IP Method Only

For a horizontal intersection point (HIP) with no transitions or arc defined at that HIP, the part is
defined by:

ip {
id value // part id - a number that is unique for each horizontal and vertical part,

// and the value of part id is a multiple of 100
x value // x co-ordinate of the horizontal intersection point
y value // y co-ordinate of the horizontal intersection point

}

For a horizontal intersection point (HIP) with an arc but no transitions defined at that HIP, the part
is defined by

arc {
id value // part id - a number that is unique for each horizontal and vertical part,

// and the value of part id is a multiple of 100
March 2011 Page 406912d Ascii Definition for each String Type

12d Model Reference Manual
r value // radius of the arc at the HIP
x value // x co-ordinate of the HIP
y value // y co-ordinate of the HIP

}

For a horizontal intersection point (HIP) with an arc and transitions defined at that HIP, the part is
defined by

spiral {
id value // part id - a number that is unique for each horizontal and vertical part,

// and the value of part id is a multiple of 100
r value // radius of the arc at the HIP
l1 value // length of the leading transition at the HIP
l2 value // length of the trailing transition at the HIP
x value // x co-ordinate of the HIP
y value // y co-ordinate of the HIP

}

Note that the transition used in the spiral block is given by spiral_type in the super_alignment
block.

Hence a super alignment with horizontal geometry defined by IP methods only would consist of a
horizontal_parts section with only the above ip, arc and spiral blocks in it.

horizontal_parts {

ip_spiral_arc {
values // values defining the ip_spiral_arc block
"
values

}
....

ip_spiral_arc {
values // values defining the ip_spiral_arc block
"
values

}

For example,
Page 4070 March 201112d Ascii Definition for each String Type

Appendix I
Horizontal_data

The horizontal_data block contains the solved horizontal geometry of the super alignment.

The solved horizontal geometry is made up of a series of (x,y) vertices given in a data_2d block
followed by a geometry_data block specifying the geometry of the segments between adjacent
vertices. The segment can be a straight line, an arc, a transition (e.g. a spiral) or a partial
transition.

If the horizontal geometry has n vertices, then there will be (n-1) segments for an open super
alignment or n segments if the super alignment is closed.

The format of the horizontal_data block is:

horizontal_data {
name ""
chainage value
breakline line or point
colour colour
style linestyle
closed 0 or 1 // 0 if the string is open, 1 if it is closed

HIP with arc and
leading and trailing
transitions

horizontal_parts {
 ip {

 id 100
 x 42606.66161172
 y 37239.28824481
 }

 ip {
 id 200
 x 43134.36832349
 y 37330.26705997
 }

spiral {
 id 300
 r 50
 l1 30
 l2 40
 x 43336.6595
 y 37469.2563
}

arc {
 id 400
 r 75
 x 43481.15324268
 y 37331.6431906
}

ip {
 id 500

 x 43627.02308964
 y 37544.94343852
 }
}

1st HIP
HIP only

2nd HIP
HIP only

3rd HIP

4th HIP
HIP with arc only

5th HIP
HIP only

Horizontal Parts with IP Methods Only

Plan View of Super Alignment

Super Alignment Being Edited

Unique Part id
incrementing by 100
March 2011 Page 407112d Ascii Definition for each String Type

12d Model Reference Manual
interval {
chord_arc value // chord-to-arc tolerance for curves
distance value // chainage interval to break the geometry up

}

data_2d {
 x1-value y1-value // co-ordinates of the first vertex
 x2-value y2-value // co-ordinates of the second vertex
 " "
 " "
 xn-value yn-value // co-ordinates of the n-th vertex
}

geometry_data {
segment_info_1 {

information on the first segment
}
segment_info_2 {

information on the second segment
}

" "
" "

segment_info_n-1 { // the last segment if it is open
information on the (n-1) segment

}
segment_info_n { // the last segment if it is closed

information on the n-th segment
}

}

where the segment_info blocks are from the following:

(a) Straight

No parameters are needed for defining a straight segment. The straight block is simply:

straight { // no parameters are needed for a straight
}

(b) Arc

There are four possibilities for an arc of a given radius placed between two vertices.

We use positive and negative radius, and a flag major which can be set to 1 (on) or off (0) to
differentiate between the four possibilities.

Arc with major 1 (on)

Arc with major 0 (off) (default)

Arcs with same radius but with major on or off

start
vertex

end
vertex

Arc with major 1 (on)

Arc with major 0 (off) (default)

Arcs with +ve radius

Arcs with -ve radius
Page 4072 March 201112d Ascii Definition for each String Type

Appendix I
So the arc block is:

arc {
radius value // radius of the arc (+ve is above the line connecting the vertices)
major 0 or 1 // 0 is the smaller arc, 1 the larger arc).

}

(c) Spiral - this covers both spiral and non-spiral transitions

There can be a partial transition between adjacent vertices. The partial transition is defined by
the parameters

l1 length of the full transition up to the start vertex
r1 radius of the transition at the start vertex
a1 angle in decimal degrees of the tangent to the transition at the start vertex
l2 length of the full transition up to the end vertex
r2 radius at the end vertex
a2 angle in decimal degrees of the tangent to the transition at the end vertex

Since a radius can not be zero, a radius of infinity is denoted by zero.

The transition is said to be a leading transition if the absolute value of the radius is increasing
along the direction of the transition (the transition will tighten). Otherwise it is a trailing
transition.

If a leading transition is a full transition then r1 = 0 and l1 = 0. Similarly if a trailing transition is
a full transition then r2 = 0 and l2 = 0.

For a partial transition, if the coordinates of the start of the full transition are needed then they
can be calculated from l1,r1,a1, l2,r2,a2 and the co-ordinates of the start and end vertices.

Note that the radii can be positive or negative. If the radii’s are positive then a leading
transition will curl to the right (and will be above the line joining the start and end vertices).

The parameters for the spiral block are:

spiral {
type transition_type // any of the transitions supported in 12d
leading 1 or 0 // 1 denotes a leading transition, 0 a trailing transition
l1 value // length of the full transition at start vertex
r1 value // radius at the start vertex
a1 value // angle in decimal degrees of the tangent to the transition

// at the start vertex
l2 value // length of the full transition at end vertex

l2 - l1 = the length of transition
from the start vertex to
the end vertex

start
vertex

end
vertex

partial transition segment between
the super alignment vertices

Example of a Leading Partial Transition with Positive Radii
i.e. radius increases along the transition

start of full transition
(radius of "infinity"
but will be denoted
as a radius of 0)

l1 = length of the
full transition before
the start vertex

r1 = radius at
start vertex

r2 = radius at
end vertex

l2 = length of the
full transition up to
end vertex

a2 = angle of the tangent
to the transition at end vertex

a1 = angle of the tangent
to the transition at start vertex
March 2011 Page 407312d Ascii Definition for each String Type

12d Model Reference Manual
r2 value // radius at end vertex
a2 value // angle in decimal degrees of the tangent to the transition

// at the end vertex
}

Notes

1. The spiral block covers both spiral and non-spiral transitions.

2. The transitions/spirals supported by 12d Model are:

Clothoid - spiral approximation used by Australian road authorities and Queensland Rail.

Cubic parabola – special transition curve used by NSW railways. Not a spiral.

Westrail cubic – spiral approximating used by WA railways.

Cubic spiral – low level spiral approximation. Only ever used in surveying textbooks.

Natural Clothoid – the proper Euler spiral. Not used by any authority.

Bloss – special transition used by Deutsche Bahn. Not a spiral.

Sinusoidal - special transition. Not a spiral.

Cosinusoidal - special transition. Not a spiral.
Page 4074 March 201112d Ascii Definition for each String Type

Appendix I
Vertical Geometry
The vertical geometry is described by two blocks - the vertical_parts block and the vertical_data
block.

The vertical_parts block contains the methods to construct the vertical geometry such as float
(fit) a parabola of a certain length between two given lines.

If the vertical construction methods are consistent, then they can be solved to form a string made
up of lines, parabolas and arcs. The vertical_data block is simply a list of the vertices and
segments (lines, parabolas and arcs) that make up the solved geometry.

If the geometry in the vertical_parts can be solved and produces a valid vertical_data block, then
the flag valid_vertical in the super_alignment block is set to true.

valid_vertical true or false///true if the vertical geometry can be solved and
// hence create a valid vertical_data

vertical_parts { // methods for creating the vertical geometry
....

}

vertical_data { // the vertical geometry
....

}

For information on vertical_parts, go to the section “Vertical_parts”
vertical_data “Vertical_data”

Vertical_parts

The vertical_parts block describes the methods used to construct the vertical geometry of the
super alignment. The parts that make up the vertical geometry are defined in chainage order
from the start to the end of the super alignment.

vertical_parts { // methods for creating the vertical geometry
blocks defining the sequential parts
making up the vertical geometry

}

 Apart from the special case of parts defined by vertical intersection points and their
accompanying parabolas and arcs, the other parts in the vertical_parts block are undocumented.

Vertical_parts for defined by IP Method Only

For a vertical intersection point (VIP) with no parabola or arc defined at that VIP, the part is
defined by:

ip {
id value // part id - a number that is unique for each horizontal and vertical part,

// and the value of part id is a multiple of 100
x value // chainage co-ordinate of the VIP
y value // height co-ordinate of the VIP

}

For a vertical intersection point (VIP) with a parabola defined by a k value at that VIP, the part is
defined by

kvalue {
id value // part id - a number that is unique for each horizontal and vertical part,

// and the value of part id is a multiple of 100
k value // k-value of the parabola at the VIP
March 2011 Page 407512d Ascii Definition for each String Type

12d Model Reference Manual
x value // chainage co-ordinate of the VIP
y value // height co-ordinate of the VIP

}

For a vertical intersection point (VIP) with a parabola defined by length at that VIP, the part is
defined by

length {
id value // part id - a number that is unique for each horizontal and vertical part,

// and the value of part id is a multiple of 100
l value // length of the parabola at the VIP
x value // chainage co-ordinate of the VIP
y value // height co-ordinate of the VIP

}

For a vertical intersection point (VIP) with a parabola defined by an effective radius at that VIP,
the part is defined by

radius {
id value // part id - a number that is unique for each horizontal and vertical part,

// and the value of part id is a multiple of 100
r value // effective radius of the parabola at the VIP
x value // chainage co-ordinate of the VIP
y value // height co-ordinate of the VIP

}

For a vertical intersection point (VIP) with an asymmetric parabola defined by the start and end
lengths at that VIP, the part is defined by

length {
id value // part id - a number that is unique for each horizontal and vertical part,

// and the value of part id is a multiple of 100
l1 value // start length of the asymmetric parabola at the VIP
l2 value // end length of the asymmetric parabola at the VIP
x value // chainage co-ordinate of the VIP
y value // height co-ordinate of the VIP

}

For a vertical intersection point (VIP) with an arc defined by a radius at that VIP, the part is
defined by

arc {
id value // part id - a number that is unique for each horizontal and vertical part,

// and the value of part id is a multiple of 100
r value // radius of the arc at the VIP
x value // chainage co-ordinate of the VIP
y value // height co-ordinate of the VIP

}

Hence a super alignment with vertical geometry defined by IP methods only would consist of a
vertical_parts section with only the above ip, parabola and arc blocks in it.

vertical_parts {

ip_parabola_arc {
values // values defining the ip_parabola_arc block
"

Page 4076 March 201112d Ascii Definition for each String Type

Appendix I
values
}

....
ip_parabola_arc {

values // values defining the ip_parabola_arc block
"
values

}
}

For example,

vertical_parts {
ip {

id 600
 x -50.8459652
 y 159.79764161

}
kvalue {

id 700
 k 1.25
 x 38.4627
 y 179.2126

}
length {

id 800
 l 50
 x 172.61694837
 y 154.72967932

}
asymmetric {

id 900
 l1 25
 l2 75
 x 270.0182
 y 208.1493

}
arc {

id 1000
 r 1000
 x 424.2402
 y 196.5637

}
radius {

id 1100
 r 200
 x 526.7263
 y 201.5302

}
 ip {

id 1200
 x 637.69216273
 y 198.71894484

}
}

1st VIP
VIP only

2nd VIP
Parabola defined

5th VIP
Arc with radius

Vertical Parts with IP Methods Only

Section View of Super Alignment

Vertical Geometry Being Edited

by k value

3rd VIP
Parabola defined
by length

4th VIP
Asymmetric parabola defined
by two lengths

7th VIP
VIP only

6th VIP
Parabola defined
by effective radius

Unique Part id
incrementing by 100
March 2011 Page 407712d Ascii Definition for each String Type

12d Model Reference Manual
Vertical_data

The vertical_data block contains the solved vertical geometry of the super alignment.

The solved vertical geometry is made up of a series of (chainage,height) vertices given in a
data_2d block followed by a geometry_data block specifying the geometry of the segments
between adjacent vertices. The segment can be a straight line, a parabola or an arc.

If the vertical geometry has n vertices, then there will be (n-1) segments for an open super
alignment or n segments if the super alignment is closed.

The format of the vertical_data block is:

vertical_data {
name ""
chainage value
breakline line or point
colour colour
style linestyle
closed 0 or 1 // 0 if the string is open, 1 if it is closed
interval {

chord_arc value // chord-to-arc tolerance for curves
distance value // chainage interval to break the geometry up

}

data_2d {
 ch1-value ht1-value // co-ordinates of the first vertex
 ch2-value ht2-value // co-ordinates of the second vertex
 " "
 " "
 chn-value htn-value // co-ordinates of the n-th vertex
}

geometry_data {
segment_info_1 {

information on the first segment
}
segment_info_2 {

information on the second segment
}

" "
" "

segment_info_n-1 { // the last segment if it is open
information on the (n-1) segment

}
segment_info_n { // the last segment if it is closed

information on the n-th segment
}

}

where the segment_info blocks are from the following:

(a) Straight

No parameters are needed for defining a straight segment. The straight block is simply:

straight { // no parameters are needed for a straight
}

(b) Arc

Since vertical geometry can’t go backwards in chainage value, the majors arcs can not be
used and hence there are only possibilities for an arc of a given radius placed between two
Page 4078 March 201112d Ascii Definition for each String Type

Appendix I
vertices.

We use positive and negative radius to differentiate between the four possibilities.

So the arc block is:

arc {
radius value // radius of the arc (+ve is above the line connecting vertices)
major value // this is ignored since only minor arcs are used

}

(c) Parabola

There can be a parabola between adjacent vertices. The parabola is defined by giving the co-
ordinates of the vertical intersection point for the parabola

chainage chainage of the VIP of the parabola
height height of the VIP of the parabola

The parameters for the parabola block are:

parabola {
chainage value // chainage of the VIP of the parabola
height value // height of the VIP of the parabola

}

Please continue to the next section “12d Ascii Definition for Tins”

only arc with major 0 (off) is allowed

Arcs with same absolute radius

start
vertex

end
vertex

only the arc with major 0 (off) is allowe

Arc with +ve radius

Arc with -ve radius

(chainage,height)

start
vertex

end
vertex

Vertical intersection point given by

Example of a Parabola
March 2011 Page 407912d Ascii Definition for each String Type

12d Model Reference Manual
12d Ascii Definition for Tins
Tins (triangulated irregular networks) and Super Tins can be written out and read in from a 12d
Ascii file.

For the 12da definitions of tins go to the section “Tins”
super tins “Super Tins”

Tins
tin {
name tin_name // MANDATORY name of the tin when created in 12d Model

time_created text // optional - time tin first created
time_updated text // optional - time tin last modified

// Attributes Block:

// This is mainly information used by 12d Model to create the tin.
// The attributes this block and the Attributes block itself are optional.
// When a tin is read into 12d Model from a 12da file, the style is used
// as the Tin style.

attributes {
text "style" text // name of line style for the tin
integer "faces 0/1 // 0 non triangle data, 1 triangle data
real "null_length" value // values for null by angle/length
real "null_angle" value // angle in radians
real "null_combined_length" value
real "null_combined_angle" value // angle in radians

// any other attributes
} // end of attributes block

// Points Block
//
// Co-ordinates of the points at the vertices of the triangles
// The points are implicitly numbered by the order in the list (starting at point 1).
//
// The Points Block is MANDATORY

points { // x y z for each point in the tin
x-value y-value -value // point 1

 " " " // point 2
 " " "
} // end of points block

// Triangles Block
//
// Each triangle is given as a triplet of the point numbers that make up
// the triangle vertices (the point numbers are the implicit position of the points
// given in the Points Block.
// The order of the triangles is unimportant
//
Page 4080 March 201112d Ascii Definition for Tins

Appendix I
// The Triangles Block is MANDATORY

triangles { // points making up each triangle
 T1-1 T1-2 T1-3 // point numbers of the 3 vertices of first triangle.
 T2-1 T2-2 T-33 // point numbers of the 3 vertices of second triangle.
 " "
 " "

} // end of triangles block

// Base Colour
// The tin has a base colour that is the default colour for all triangles

colour tin_base_colour // optional - base colour of the tin

// Colours Block
//
// Triangles can be given colours other than the base colour by including
// a colours block. The colour for each triangle in then individually given
// (-1 means base colour). The order is the same as the order of the triangles in
// the Triangles Block.
//
// If all the triangles are the base colour, then simply omit the Colours Block

colours {
 C1 C2 C3 // colour for each triangle given in triangle order
 C4 C5 C6 C7 // colour "-1" means use the base tin colour.
 " " "
 " " "

} // end of colours block

// Input Block
//
// More information about how the tin was created by 12d Model.
// None of this information is needed when reading a tin into 12d Model.
// This block can be omitted

input { // data for reconstructing tin from strings
preserve_strings true/false // if true, preserve breaklines etc.
remove_bubbles true/false //
weed_tin true/false
triangle_data true/false
sort_tin true/false
cell_method true/false

models {
"model_name_1" // name of the first model making up the tin
"model_name_2" // name of the second model making up the tin
" " "
" " "

} // end of models block

} // end of input block
} // end of tin ascii definition
March 2011 Page 408112d Ascii Definition for Tins

12d Model Reference Manual
Super Tins
super_tin {
name tin_name // MANDATORY name of the super tin

time_created text // optional - time super tin first created
time_updated text // optional - time super tin last modified

// Attributes Block:

// This is mainly information used by 12d Model to create the super tin.
// The attributes in this block and the Attributes block itself are optional.
// When a super tin is read into 12d Model from a 12da file, the style is used
// as the Super Tin style.

attributes {
text "style" text // name of line style for the tin

// any other attributes
} // end of attributes block

// Super Tin Colour
// The super tin has a base colour

colour tin_base_colour // optional - base colour of the super tin

// Tins Block
//
// This is the list of tins that make up the super tin.
// This block is MANDATORY

tins { // list of tins for the super tin
"tin_name_1" // name of the first tin making up the super tin
"tin_name_2" // name of the second tin making up the super tin
" " "
" " "

} // end of tins block

} // end of super tin ascii definition

Please continue to the next section “12d Ascii Definition for Plot Frames” .
Page 4082 March 201112d Ascii Definition for Tins

Appendix I
12d Ascii Definition for Plot Frames
Plot frames can be written out and read in from a 12d Ascii file.

string plot_frame {
name frame_name
title_file filename
border 0 or 1
viewport 0 or 1
user_title_file 0 or 1
title_1 text
title_2 text
plot_file filename
text_size mm
sheet_code text
width value
height value
scale value
rotation value
xorigin value
yorigin value
left_margin mm
right_margin mm
top_margin mm
bottom_margin mm
plotter text
colour colour
textstyle textstyle_name

}

March 2011 Page 408312d Ascii Definition for Plot Frames

12d Model Reference Manual
Page 4084 March 201112d Ascii Definition for Plot Frames

	I 12d Ascii File Format
	General Comments about 12d Ascii File
	Attributes
	Commands
	12d Ascii Definition for each String Type
	2d String
	3d String
	4d String
	Alignment String
	Arc String
	Circle String
	Drainage String
	Face String
	Feature String
	Interface String
	Pipe String
	Pipeline String
	Polyline String
	Text String
	Super String
	(a) blocks defining the position of the vertices in z, y and z
	(b) blocks defining the geometry of the segments
	(c) a superseded block defining vertices and segment geometry
	(d) extra information for the vertices and/or segments
	(a) Straight
	(b) Arc
	(c) Spiral - this covers both spiral and non-spiral transitions
	1. The spiral block covers both spiral and non-spiral transitions.
	2. The transitions/spirals supported by 12d Model are:

	Super Alignment String
	1. Just using the horizontal and vertical data is valid as long as the super alignment geometry i...
	2. Segments meeting at a common vertex do not have to be tangential although for most road and ra...
	(a) Straight
	(b) Arc
	(c) Spiral - this covers both spiral and non-spiral transitions

	1. The spiral block covers both spiral and non-spiral transitions.
	2. The transitions/spirals supported by 12d Model are:
	(a) Straight
	(b) Arc
	(c) Parabola

	12d Ascii Definition for Tins
	Tins
	Super Tins

	12d Ascii Definition for Plot Frames

