| 12d Ascii File Format

The 12d Ascii file format (called 4D Ascii in Version 4 and earlier) is a text file definition from
12D Solutions which is used for reading and writing out string data from 12d Model. 12d Ascii
files normally end in .12da’

This document is for the 12d Ascii file format used in 12d Model Version 9.

For General Comments about 12da, go to the section “General Comments about 12d Ascii File”

For the 12da definitions of  Attributes go to “Attributes”
Commands “Commands”
12d string types “12d Ascii Definition for each String Type”
12d tins “12d Ascii Definition for Tins”
12d plot frames “12d Ascii Definition for Plot Frames”

General Comments about 12d Ascii File

I

Anything written on a line after // is ignored. This is used to place comments in the file.

Blank lines

Unless they are part of a text string, blank lines are ignored.

Spaces

Unless enclosed in quotes ("), more than one consecutive space or tab is treated as one
space. Except when it is the delimiter after a //, an end of line (<enter>) is also considered a
space.

Spaces and special characters in text strings

Any text string that includes spaces and any characters other thanatoz, AtoZor0to 9
(alphanumeric), must be enclosed in double quotes. In text strings, double quotes " and
backslash \ must be preceded by a\. For example, \" and \\ define a " and a \ respectively in a
text string.

Names of models, tins, styles, colours and attributes

Models, tins, styles (linestyles), colours and attributes can include the characters ato z, Ato
Z, 0 to 9 (alphanumeric characters) and space. Leading and trailing spaces are ignored. The
names can be up to 255 characters in length. If the name includes spaces, the name must be
enclosed in double quotes ().

The names for models, tins, styles, colours or attributes can not be blank.

The names for models, tins, styles and colours can contain upper and lower alpha characters
which are stored, but the set of model names, tin names, style names, colour names or
attribute names for an object must be unique when case is ignored. For example, the model
name "Fred" will be stored as "Fred" but "FRED" is considered to be the same model name as
"Fred".

String names

String names can include the characters a to z, A to Z, 0 to 9 (alphanumeric characters),
space, decimal point (.), plus (+), minus (-), comma (,), open and closed round brackets and

March 20 General Comments about 12d Ascii File Page 4043

o e =~ "= = L A 72

>

V
)



12d Model Reference Manual

equals (=). Leading and trailing spaces are ignored. String hames can be up to 255
characters in length. If the string name includes anything other than alphanumeric characters,
then the name must be enclosed in double quotes ().

String can contain upper and lower alpha characters which are retained but case is ignored
when selecting by string name. That is, the string name "Fred" will be stored as "Fred" but
"FRED" is not considered to be a different name.

String names do not have to be unique and can be blank.
Please continue to the next section “Attributes” .



Appendix |

Attributes

Many 12d Model objects (such as individual strings, models and tins) can have an unlimited
number of named attributes of type integer (numbers), real and text. Within an object, the
attribute names must all be different.

The attributes for an object are given inside the curly braces of the object definition. The
attributes are preceded by the attributes keyword followed by the named attributes enclosed in
curly braces { and }.

The format for each named attribute is

attribute_type attribute_nane attribute val ue
where attribute_type is integer, real or text
attribute_name is the unique attribute name for the object
and attribute_value is the either a number, a real or a text string.

That is the attributes are defined in a block:
attributes {

i nt eger att_nane nunmber
real att_nane val ue
t ext att_nanme t ext

The text for a text attribute can be blank an if so, is defined as ™.

An example of defining attributes is:

attributes {

t ext "pole id" "QWR- 37"

t ext street "477 Boundary St"
real "pol e height" 5.25

i nt eger "pol e wires" 3

}

Please continue to the next section “Commands” .



12d Model Reference Manual

Commands

Commands consist of a keyword followed by a space and then a value (a keyword and its
value is often referred to as a keyword pair). A value must always exist.

keyword value Il a keyword pair

There can be more than on command keyword pair per line as long as each keyword pair is
separated by a space. In fact, the keyword can be on one line and the value on the next line.

Although the names of commands are only shown in lower case in these notes, commands
are case insensitive and all combinations of case are recognised as the same command.
That is 'model’, '’MODEL’ and 'ModelL’ are all recognised as the command 'model’.

The commands in the 12d Ascii file are:

model model_name Il system default data

All strings following until the next model keyword are placed in the model model_name. This
can be overridden for a string by a model command inside the string definition.

If the model includes attributes, the following model definition must be used.

model {
name model_name

All 12d Model models can have an unlimited number of named attributes of type integer
(numbers), real and text. Within a model, the attribute names must all be different.

The definition for a model with attributes is the model keyword followed by information
enclosed in curly braces { and }. The keyword name followed by the model_name must be
included inside the curly braces.

name model_name

The attributes for the model are also specified inside the curly braces of the model definition.
As described previously, the attributes are preceded by the attribute keyword followed by the
named attributes enclosed in curly braces { and }.

Hence the model definition with attributes is:
model {

nane model_name

attributes {
attribute_type attribute_nane attribute_val ue
attribute_type attribute name  attribute val ue

attribute_type attribute name attribute val ue

}
}
For example:
nodel {
nanme "telegraph poles’
attributes {
t ext "pole id" " QVR- 37"
t ext "street" "477 Boundary St"
r eal "pol e hei ght" 5.25
i nteger "pole wres" 3
}
Page 4046 Commands March 2011



Appendix |

}

colour colour_name 1 system default red

All strings following until the next colour keyword have colour colour_name. This can be
overridden for a string by a colour command in the string definition.

style style name 1 system default 1

All strings following until the next style keyword have style style name. This can be overridden
for a string by a style command in the string definition.

breakline point or line Il system default line

All strings following that requires a breakline point-line type until the next breakline keyword,
have this point-line type. This may be overridden for the string by a breakline in the string
definition.

null  value Il system default -999

All z-values equal to valuein strings following until the next null keyword, are considered to be
null z-values.

string  string_type {

}

The string_type is compulsory and must be followed by all the string information enclosed in
curly braces { and }.

Thus if a string type or possibly information inside the string is not recognised, the 12d Ascii
reader has a chance of being able to jump over the string by looking for the end marker }.

Inside the braces are string commands as keyword pairs defining some information for the
string.

There can be more than one string command keyword pair per line as long as each keyword
pair is separated by a space. In fact, the keyword can be on one line and the value on the
next line.

Any unrecognized string commands are ignored.

The string command keyword pairs include model, colour, style and breakline which are all
optional inside the string definition. However if any of them exist inside a string definition, then
the string command keyword overrides any model, colour, style or breakline commands but
only for that particular string.

For some string types (e.g. 2d, 3d, pipe) there is more data required than just the string
command keyword pairs.

This extra data is contained is blocks consisting of a keyword followed by the required
information enclosed in curly braces { and }. For example attributes for all string types and
(x,y) data for a 2d string.

For all string types, if there is not enough recognised information to define the string, the
string is ignored.

The definition of each string type and the allowed string commands and extra data for that
string type will be given after the next section on string attributes.

string attributes
All 12d Model strings can have an unlimited number of named attributes of type integer
(numbers), real and text. Within a string, the attribute names must all be different.
The attributes for a string are given inside the curly braces of the string definition. As
described previously, the attributes are preceded by the attributes keyword followed by the
named attributes enclosed in curly braces { and }.

Please continue to the next section “12d Ascii Definition for each String Type” .



12d Model Reference Manual

12d Ascii Definition for each String Type

For the 12da definitions of  2d string
3d string
4d string
Alignment string
Arc string

3d string
drainage string
face string
feature string

interface string

go to

pipe string
polyline string
text string
super string
super alignment string
2d String
string 2d {
z value chai nage dart_chainage
nodel model_name name string_name
col our colour_name style style name
br eakl i ne pointor line
data {
x-value y-value
}

3d String

string 3d {
chai nage start chainage
nodel model_name nane string_name
col our colour_name style style name
br eakl i ne pointor line
data {
x-value  y-value zvalue

4d String

string 4d {

angl e value offset value raise value

“2d String”

“3d String”

“4d String”
“Alignment String”
“Arc String”

“4d String”
“Drainage String”
“Face String”
“Feature String”
“Interface String”
“Pipe String”
“Polyline String”
“Text String”
“Super String”
“Super Alignment String

/'l keyword

/'l keyword



Appendix |

wor | dsi ze value or papersize valueor screensize value
chai nage start_chainage

nodel mode_name name string_name

col our colour_name style style name

br eakl i ne pointor line

textstyle tet slant degrees xfactor value

justify "top|middie|botton+left|centrelright”

data { /1 keyword
x-value y-value zvalue text /1 text can not be bl ank
! " " " /1 use "" for no text.
}
12d Ascii Definition for each String Type Page 4049



12d Model Reference Manual

Alignment String

In an alignment string the horizontal and vertical geometry are given separately and both can
only be defined by the intersection point method (IP’s).

For the horizontal geometry, the (x,y) position of the horizontal intersection points (HIPs) are
given in the order that they appear in the string, plus the circular radius and left and right
transition lengths on each HIP.

Hence a horizontal intersection point is given by either

x-value y-value  radius /1 circular curve, no transition
or

x-value y-value radius spil 1 left-transition-length spil 2 right-transition-length
radius, left-transition-length, right-transition-length can be zero (meaning they don't exist).

For the vertical geometry, the (chainage,height) position of the vertical intersection points (VIPSs)
are given in increasing chainage order, plus either the radius of the circular arc or the length of
the parabolic curve on each VIP.

Hence for a vertical intersection point is given by either

ch value zvalue length parabol a
or

ch value z-value radius circle
where

the word parabola is optional. length and radius can be zero, meaning that the parabola or arc
doesn't exist.

string alignnent {
nodel model_name nane string_name
col our colour_name style style name
chai nage start chainage interval value
draw_node value // 1 to draw crosses at HIPs and VIPs, 0 dont draw
spiral _type text /I spiral_type covers both spiral and non-spiral transitions.
/l For an alignment string, the supported transition types
/I are clothoid, cubic parabola, westrail-cubic, cubic spiral
/I More transition are supported in the super alignment
I
hi pdat a { /1 some hips must exist and precede the VIP data
x-value y-value radius /'l or
x-value y-value radius spil 1 left-transition-length spil 2 right-transition-length

}

vi pdata { /1 vips optional
ch_value z-value parabolic-length /'l or
ch_value z-value parabolic-length parabola // or
ch value z-value radius circle

}

}
Page 4050 12d Ascii Definition for each String Type March 2011



Appendix |

Arc String

string arc {
nodel mode_name nanme string_name
col our colour_name style style name
chai nage start chainage interval value radius value
xcentre value ycentre value zcentre value
xstart value ystart value zstart value
xend value yend value zend value

Circle String

string circle {
nodel model_name nane string_name
col our colour_name style style name
chai nage dstart chainage interval value radius value
zcentre value xcentre value ycentre value

Drainage String

string drai nage {
chai nage start chainage
nodel model_name nane string name
col our colour_name style style name
br eakl i ne pointor line
attributes {
text Tin finished surface tin
text NSTin natural_surface tin

integer " _floating" 1|0 // 1 for floating, O not floating
}
out fall outfall_value /I z-value at the outfall
flow_direction 0|1 // 0 drainage line is defined from downstream
// to upstream
data { I key word - geometry of the drainage string
x-value  y-value zvalue radius bulge
}
pit { /I pit/manhole - one pit record for each pit/manhole
I/ in the order along the string
nanme text /I pit name
type text /I pit type
road_nane text /l road name
road_chai nage chainage // road chainage
di aneter value I/ pit diameter
floating yes|no /I is pit floating or not
chai nage pit_chainage /I internal use only
ip value I/ internal use only
ratio value I/ internal use only
X x-value /I x-value of top of pit
y y-value /I y-value of top of pit
z z-value /I z-value of top of pit
}
March 2011 12d Ascii Definition for each String Type Page 4051



12d Model Reference Manual

pi pe { /I one pipe record for each pipe connecting pits'/manholes
/l'in the order they occur along the string
nane text /I pipe name
type text /I pipe type
di anet er value I/ pit diameter
us_| evel value 1
ds_|I evel value 1
us_hgl value 1
ds_hgl value 1
flow velocity value 1
fl ow_vol une value 1
}
property control {
name text /1ot name
col our colour_name
gr ade value I/ grade of pipein unitsof "1vin"
cover value /I cover of the of pipe
di aneter value I diameter of the of pipe
boundary value // boundary trap value
chai nage chainage Il internal use only
ip value Il internal use only
ratio value Il internal use only
X x-value /I x value of where pipe connects to sewer
y y-value /'y value of where pipe connects to sewer
z z-value Il internal use only
data { I key word - geometry of the property control

x-value  y-value zvalue radius bulge

}

house_connection { //warning- house connections may changein future versions
name text /I house connection name
hcb integer I user given integer
col our colour_name
gr ade value /I grade of connection in units of "1vin"
dept h value
di aneter value
si de left or right
| ength value
type text /I connection type
mat eri al text /I material type
bush text /Il bush type
[ evel value
adopt ed_I| evel value
chai nage chainage [l internal use only
ip value Il internal use only
ratio value Il internal use only
X x-value /I x value of where pipe connects to sewer
y y-value /'y value of where pipe connects to sewer
z z-value Il internal use only

}

} /l end of drainage-sewer data

Face String

Page 4052 12d Ascii Definition for each String Type March 2011
E——— ——— ——  —— ———— ———— = = — = > 72



Appendix |

string face {
nodel model_ nhame nane string_name
col our colour_name style style name
chai nage start_chainage br eakl i ne pointor line
hat ch_angl e value
hat ch_di stance value
hat ch_col our colour
edge_col our colour
fill _nmode Oor1l
edge_node Oor 1l
data { /1 keyword
x-value  y-value zvalue

Feature String

string feature {
nodel model_name nane string_name
col our colour_name style style name
chai nage dstart chainage interval value radius value
zcentre value xcentre value ycentre value

Interface String

string interface {
chai nage start chainage
nodel mode_name name string_name
col our colour_name style style name
br eakl i ne pointor line

data { /1 keyword
x-value  y-value zvalue mode
" " " " /! node = -1 cut
" " " " /1 0 surface
} /1 1fill

Pipe String

string pipe {
di amet er value chai nage sart chainage
nodel model_name nane string_name
col our colour_name style style name
br eakl i ne pointor line
data { /1 keyword
x-value y-value z-value

Pipeline String



12d Model Reference Manual

This is the same as an alignment string except that it has the additional keywords

diameter, which gives the diameter of the pipeline in world units
and
length of the typical pipe making up the pipeline (used for deflections).

string pipeline {
nodel model_name nane string_name
col our colour_name style style name
di amet er diameter | engt h pipelength
chai nage start chainage interval value
spiral _type text /I spiral_type covers both spiral and non-spiral transitions
// supported by 12d. For an alignment string, the
/I supported transition types are clothoid, cubic parabola,
/I westrail-cubic, cubic spiral. Other transition types
/I are supported in the super alignment
hi pdat a { /1 sonme hips nust exist and precede vips
x-value y-value  radius /1 or
x-value y-value radius spil 1 left-transition-length  spi |l 2 right-transition-length

}

vi pdata { /1 vips optional
ch-value  zvalue parabolic-length /1l or
ch-value  zvalue parabolic-length parabola // or

ch-value zvalue radius circle

Polyline String

The definition of a closed string has been refined for polyline and super strings. For other string
types, closing a string simply meant having the first vertex the same as the last vertex. Hence the
vertex was duplicated.

For a polyline string, being closed is a property of the string and no extra vertex is needed - the
first and the last vertices are not the same and the polyline string knows there is an additional
segment from the last vertex back to the first vertex.

In the 12d ascii format, there is a new closed flag for the polyline string:
closed true or false

where truecanbe 1 or T or t or Y or y (orwords starting with T, t, Y or y))
and falseis 0 or F or f or N or n (orwords starting with F, f, N or n.

string polyline {
chai nage start chainage
nodel model_name nane string_name
col our colour_name style style name
br eakl i ne pointor line
cl osed trueor false

data { /1 keyword
x-value  y-value zvalue radius bulge flag

Page 4054 12d Ascii Definition for each String Type March 2011
E———— ——— —— —— ———— ———— = = — = > 72



Appendix |

Text String

string text {
X value y value z value
nodel model_name name string name col our colour_name
text text value
angl e value offset value raise value
textstyl e texdstyle name sl ant degrees xfactor value
wor | dsi ze value or papersize valueor screensize value
justify "top|middle|bottom-left|centrelright”

=



12d Model Reference Manual

Super String

Because the super string is so versatile, its 12d Ascii format looks complicated but it is very
logical and actually quite simple.

In its most primitive form, the super string is simply a set of (x,y) values as in a 2d string, or (X,y,z)
values as in a 3d string, or (X,y,z,radius,bulge_flag) as for a polyline string or even lines, arcs and
transitions (spirals and non-spiral transitions).

Additional blocks of information can extend the definition of the super string. For example, text,
pipe diameters and visibility.

Some of the properties of the super string extend what were constant properties for the entire
string in other string types. For example, breakline type for the string extends to tinability of
vertices and segments. One colour for the string extends to individual colours for each segment.

Other properties such as vertex id’s (point numbers), visibility and culvert data are entirely new.

For user attributes, the super string still has the standard user attributes defined for the entire
string, but user attributes for each vertex and segment are also supported.

The definition of a closed string has been refined for polyline and super strings. For other string
types, closing a string simply meant having the first vertex the same as the last vertex. Hence the
vertex was duplicated.

For a super string, being closed is a property of the string and no extra vertex is needed. That is,
the first and the last vertices are not the same for a closed super string and the super string
knows there is an additional segment from the last vertex back to the first vertex.

Hence in the 12d ascii format, there is a closed flag for the super string:
closed true or false

where truecanbe 1 or T or t or Y or y (orwords starting with T, t, Y or y))
and falseis 0 or F or f or N or n (orwords starting with F, f, N or n.

Thus if a string has n vertices, then an open string has n-1 segments joining the vertices and a
closed string has n segments since there is an additional segment from the last to the first vertex.

With the additional data for vertices and segments in the super string, the data is in vertex or
segment order. So for a string with n vertices, there must be n bits of vertex data. For segments,
if the string is open then there only needs to be n-1 bits of segment data but for closed strings,
there must be n bits of data. For an open string, n bits of segment data can be specified and the
nth bit will be read in and stored. If the string is then closed, the nth bit of data will be used for the
extra segment.

S
«Q
@D
I
o
o
»
=
N
o
[ >
&<}
O
Q
5.
=
>
>
(@]
=
g
-
)
=
«Q
g
o)
D
z
)
(@]
o0
N
o
'—\
=



Appendix |

\

first g
vertex sl
/ first segment
| (astraight)
l segment n second segment
\' (only if the string is closed) (anarc)
\
AN
vertex n
segment n-1
(astraight) vertex n-1
/ vertex 3
/
4 segment 3
4 (astraight)
/
/
< vertex 4
N segment 4
~N (atransition)
~ vertex 5
. vertex 6
\ Vertices and Segments Forming the Super String J

The full 12d Ascii definition of the super string is:

string super {
chai nage dtart_chainage
nodel model_name nane string_name
col our colour_name style style name
br eakl i ne pointor line
cl osed trueor false

i nterval {
chord_arc value /I chord-to-arc tolerance for curves
di st ance value Il chainage interval to break the geometry up
}
bl ock of info {
}
bl ock of info {
}
bl ock of info {
}

}

The blocks of info can be broken up into four types.
(a) blocks defining the position of the vertices in z, y and z
data_2d or data_3d



12d Model Reference Manual

(b) blocks defining the geometry of the segments
radius_data and major_data or geometry data

(c) asuperseded block defining vertices and segment geometry
data

(d) extra information for the vertices and/or segments

pipe diameters - diameter_value or diameter_data

culvert dimensions - culvert_value or culvert _data

pipe/culvert justification - justify

colour - colour or colour_data

vertex ids (point numbers) at each vertex- point_data

tinability - breakline or vertex_tinability data and segment _tinability data
visibility - vertex_visible _data and segment_visible _data

vertex text and annotation - vertex_text data and vertex_annotation_data
segment text and annotation - segment _text_data and segment_annotation_data
symbols at vertices - symbol _value or symbol_data

vertex attributes - vertex_attribute data

segment attributes - segment_attribute data

extrudes

image data

holes

The definition for the blocks of each type now follows.

(a) Blocks Defining the Position of the Vertices

For (x,y) Valueswith a Constant z
If there is only (x,y) values at each vertex (like a 2d string):

data_2d { /1 keyword
x-value  y-value

}

and if there is a non-null constant z for the string
z value

For (x,y,z) Values
If there is (x,y,z) values at each vertex (like a 3d string):

data_3d { /1 keyword
x-value  y-value zvalue

(b) Blocks Defining the Geometry of the Segments
Sraightsand Arcs Only for the Segments

If data_2d or data_3d was used, it is possible to add radius and bulge_flag data:

radi us_data { /1 keyword
radius for first segment
radius for second segment

S
«Q
@D
I
o
(&1
(0]
=
N
o
[ >
&<}
O
Q
5.
=
>
>
(@]
=
g
-
)
=
«Q
g
o)
D
z
)
(@]
o0
N
o
'—\
=



Appendix |

radius for last segment

}
maj or _data { /1l keyword
bulge flag for first segment
bulge flag for second segment
bulge flag for last segment
}

Sraights, Arcsand Transitions (Spiral and non-Spiral Transitions) for the Segments

If data_2d or data_3d was used, it is possible to specify if the segments are straight, arcs or
transitions using a geometry data block.

geonetry_data {
segnent _info_1 {
information on the first segment

}
segnent _info_2 {
information on the second segment

segment _info_n-1 { I/ the last segment if it is open
information on the (n-1) segment

}
segnment _info_n { // the last segment if it is closed

information on the n-th segment

}
}

where the segment _info blocks are from the following:
(@) Straight
No parameters are needed for defining a straight segment. The straight block is simply:

straight { /I no parameters are needed for a straight
}

(b) Arc
There are four possibilities for an arc of a given radius placed between two vertices.

We use positive and negative radius, and a flag major which can be set to 1 (on) or off (0) to
differentiate between the four possibilities.



12d Model Reference Manual

ﬁrcs with +ve radius Arc with major 1 (on) \

Arc with major O (off) (default)

start end
vertex I N . \l vertex
~ _ —
\ Arc with major 0 (off) (default)

AN

v
Arcs with -ve radius— ~_ AAr¢ with major 1 (on)

KArcs with same radius but with major on or off/

So the arc block is:
arc {
radi us value / radius of the arc (+ve is above the line connecting the vertices)
major Oorl I/l 0 is the smaller arc, 1 the larger arc).

(c) Spiral - this covers both spiral and non-spiral transitions

There can be a partial transition between adjacent vertices. The partial transition is defined by
the parameters

1 length of the full transition up to the start vertex

rl radius of the transition at the start vertex

al angle in decimal degrees of the tangent to the transition at the start vertex

2 length of the full transition up to the end vertex

r2 radius at the end vertex

a2 angle in decimal degrees of the tangent to the transition at the end vertex

Since a radius can not be zero, a radius of infinity is denoted by zero.

The transition is said to be a leading transition if the absolute value of the radius is increasing
along the direction of the transition (the transition will tighten). Otherwise it is a trailing
transition.

If a leading transition is a full transition then r1 = 0 and I1 = 0. Similarly if a trailing transition is
a full transition then r2 =0 and 12 = 0.

For a partial transition, if the coordinates of the start of the full transition are needed then they
can be calculated from I1,r1,al, 12,r2,a2 and the co-ordinates of the start and end vertices.

Note that the radii can be positive or negative. If the radii’s are positive then a leading
transition will curl to the right (and will be above the line joining the start and end vertices).

5
«Q
@D
IS
o
(@))
o
IRy
N
o
[ >
8
O
@,
=
=
>
S
g
-
@
S
«Q
>
o)
D
=z
)
(@]
o0
N
o
=



Appendix |

start of full transition

Example of a Leading Partial Transition with Positive Radii
\i.e. radius increases along the transition /

start partial transition segment between \
vertex the super alignment vertices

/ rl=radiusat

start vertex
al = angle of the tangent

I2 - 11 = the length of transition
from the start vertex to

radius of "infinity"
Elut will be denotedy to the transition at start ver the end vertex
. r2 =radius at
asaradius of 0) 11.= length of the raivsa
full transition before end B
the start vertex vertex 12 = Iength of the

full transition up to
end vertex

a2 = angle of the tangent
to the transition at end vertex

The parameters for the spiral block are:

spiral {
type value /I type can be clothoid, cubic parabola, westrail-cubic,
/I cubic spiral, natural clothoid, bloss,
/I bloss, sinusoidal, cosinusoidal
leading 1or0 /I 1 denotes aleading transition, 0 atrailing transition
1 value /I length of the full transition at start vertex
ri value // radius at the start vertex
al value /I angle in decimal degrees of the tangent to the transition
/] at the start vertex
|2 value /l'length of the full transition at end vertex
r2 value /I radius at end vertex
a2 value /I angle in decimal degrees of the tangent to the transition
/I at the end vertex
}
Notes

1. The spiral block covers both spiral and non-spiral transitions.
2. The transitions/spirals supported by 12d Model are:

select Choice

clothoid

cubic parabola
westrail-cubic
cubic spiral
natural clothoid
bloss

sinusaidal
cosinusoidal

Clothoid - spiral approximation used by Australian road authorities and Queensland Rail.
Cubic parabola — special transition curve used by NSW railways. Not a spiral.

Westrail cubic — spiral approximating used by WA railways.

Cubic spiral — low level spiral approximation. Only ever used in surveying textbooks.
Natural Clothoid — the proper Euler spiral. Not used by any authority.

Bloss — special transition used by Deutsche Bahn. Not a spiral.

Sinusoidal - special transition. Not a spiral.

T —



12d Model Reference Manual

Cosinusoidal - special transition. Not a spiral.

(c) Block Defining the Vertices and Segments

For compatibility with the polyline, the data block gives the (x,y,z,radius,bulge) values at each

vertex of the string and so defines both the vertices and the geometry of the segments in the one
block.

data { /1 keyword
x-value  y-value zvalue radius bulge

(d) Other Blocks

Pipe Diameters

There can be one pipe diameter value for the entire super string or the pipe diameter varies for
each segment of the super string.

di anet er _val ue value
or

di aneter _data { /1 keyword
pipe diameter for first segment
pipe diameter for second segment

pipe diameter for last segment

Culvert Dimensions

There can be one culvert width and height for the entire super string or the culvert width and
height vary for each segment of the super string.

cul vert _val ue {
wi dt h value
hei ght value

}
or
cul vert _data { properties{wi dth value /I width and height for first segment
hei ght value
}
properties{wi dt h value /I width and height for second segment
hei ght value
}
properties{wi dt h value // width and height for last segment
hei ght value
}
}

Justification for Pipe or Culverts

There can be only one justification for the pipe or culvert for the entire super string.

justify justfication // bottom or invert
/ top or obvert

S
«Q
@D
I
o
()]
N
=
N
o
[ >
&<}
O
Q
5.
=
>
>
(@]
=
g
-
)
=
«Q
g
o)
D
z
)
(@]
o0
N
o
'—\
=



Appendix |

/I centre (default)

Colour

There can be one colour for the entire super string which is given by the col our command at
the beginning of the string definitions (before the blocks of information) or the colour varies for
each segment of the super string and is specified in a colour_data block.

col our _data { /1 keyword
colour for first segment
colour for second segment

colour for last segment

Vertex Id’s (Point Numbers)

Each vertex can have a vertex id (point number). This is not the order number of the vertex in the
string but is a separate id which is usually different for every vertex in every string. The vertex id
can be alphanumeric.

poi nt _data { /I keyword
vertex id or first vertex // alphanumeric
vertex id for second vertex

vertex id for last vertex

Tinability
For a super string, the concept of breakline has been extended to a property called tinable which
can be set independently for each vertex and each segment of the super string.
If a vertex is tinable, then the vertex is used in triangulations. If the vertex is not tinable, then the
vertex is ignored when triangulating.

If a segment is tinable, then the segment is used as a side of a triangle during triangulation. This
may not be possible if there are crossing tinable segments.

vertex_tinabl e_data { I keyword
tinable flag for first vertex /I 1 for tinable
tinable flag for second vertex /I 0 for not tinable

tinable flag for last vertex

segment _ti nabl e_data { I keyword
tinable flag for first segment /I 1 for tinable
tinable flag for second segment /I 0 for not tinable

tinable flag for last segment

}
Note that even if a segment is set to tinable, is can only be used if both its end vertices are also
tinable.
Visibility
For a super string, the concept of visibility and invisibility for vertices and segments has been
introduced.
March 2011 12d Ascii Definition for each String Type Page 4063



12d Model Reference Manual

vertex_visible_data { Il keyword
visibility flag for first vertex /I 1 for visible
visibility flag for second vertex /I 0 for invisible

visibility flag for last vertex

}
segnent _vi si bl e_data { Il keyword
visibility flag for first segment /I 1 for visible
visibility flag for second segment /I 0 for invisible
visibility flag for last segment
}

Vertex Text and Vertex Annotation

There can be the same piece of text for every vertex in the super string or a different text for each
vertex of the super string. How the text is drawn is specified by vertex annotation values. Note
that in vertex annotations, all vertices must be either worldsize or all vertices papersize. That is,
worldsize and papersize can not be mixed - the first one found is used for all vertices.

vertex_text val ue text
or
vertex_text _data { /1 keyword
text for first vertex /I text string, enclose
text for second vertex [/ by "" if there are any
c /Il spacesin thetext string
text for last vertex
}
vertex_annot ate_val ue { /1 keyword
angl e value offset value raise value
textstyl e textstyle name sl ant degrees xfactor value
wor | dsi ze value or papersize valueor screensize value
justify "top|middiebottom-left|centreright”
col our colour_name
}
or
vertex_annotate data { /1 keyword
properties { angl e value offset value raise value
textstyl e texdstyle slant degrees xfactor value
wor | dsi ze value or papersi ze valueor screensize value
justify "top|middiebottom-left|centreright”
col our colour_name
}
properties {  text properties second vertex
}
properties {
}
properties { text propertiesfor last vertex
}
}

Segment Text and Segment Annotation

There can be the same piece of text for every segment in the super string or a different text for
each segment of the super string. How the text is drawn is specified by segment annotation

S
«Q
@D
I
o
(e))
R
=
N
o
[ >
&<}
O
Q
5.
=
>
>
(@]
=
g
-
)
=
«Q
g
o)
D
z
)
(@]
o0
N
o
'—\
=



Appendix |

values. Note that in segment annotations, all segments must be either worldsize or all segments
papersize. That is, worldsize and papersize can not be mixed - the first one found is used for all
segments. However, vertex text and segment text do not both have to be papersize or worldsize.

segment _text _val ue text
or
segment _text_data { /'l keyword
text for first segment // text string, enclose
text for second segment I/l by """ if there are any
C /I spacesin the text string
text for last segment
}
segment _annot at e_val ue { /'l keyword
angl e value offset value raise value
textstyl e textstyle slant degrees xfactor value
wor | dsi ze value or papersize valueor screensize value
justify "top|middielbottom-left|centre|right”
col our colour_name
}
or
segnent _annot ate_data { /'l keyword
properties { angl e value offset value raise value
textstyl e textstyle slant degrees xfactor value
wor | dsi ze value or papersize valueor screensize value
justify "top|middie]bottom-left|centrelright”
col our colour_name
}
properties { text properties second segment
}
properties {
}
properties { text properties for last segment
}
}
Symbols

There can be the same symbol (defined as a linestyle) for every vertex in the super string or a
different symbol for each vertex of the super string. If a symbol does not have a colour, then it
uses the string colour or the segment colour.

synbol val ue { /1 keyword
styl e linestyle name col our colour_name size value
rotation value /1 in dms
of fset value raise value
}
or
synbol data { /1 keyword
properties { styl e linestyle name col our colour_name size value
styl e linestyle col our colour size value
rotation value /1 in dms
of fset value raise value
}
properties { symbol and properties for second vertex
}
properties {
March 2011 12d Ascii Definition for each String Type Page 4065



12d Model Reference Manual

}

properties { symbol and properties for last vertex

}

Vertex Attributes

Each vertex can have one or more user defined named attributes.

vertex_attribute data { /'l key word

attributes {  attribute type attribute name attribute value
attribute type attribute name attribute value

attribute type attribute name attribute value

}

attributes {  named attributes for second vertex
}

attributes {

}

attributes { named attributes for last vertex

}

Segment Attributes
Each segment can have one or more user defined named attributes.

segrment _attribute data { /1 keyword
attributes {  attribute type attribute name attribute value
attribute type attribute name attribute value

attribute type attribute name attribute value

}
attributes { named attributes for second segment
}
attributes {
}
attributes {  named attributes for last segment
}
}
Page 4066 12d Ascii Definition for each String Type



Appendix |

Super Alignment String

In an alignment string, only the intersection point method (IP’s) could be used to construct the
horizontal and vertical geometry. The IP definition is actually a constructive definition and the
tangents points and segments between the tangent points (lines, arcs, transitions etc.) are
calculated from the IP definition. For an alignment string, only the IP definitions are included in
the 12d ascii file.

For a super alignment, the horizontal and vertical geometry are also defined separately and
with construction definitions but the construction definition can be much more complex than just
IP’s. For example, an arc could be defined as being tangential to two offset elements, or
constrained to go through a given point.

If the horizontal construction methods are consistent then the horizontal geometry can be solved,
and the horizontal geometry expressed in terms of consecutive segments (lines, arcs,
transitions) that are easily understood and drawn.

Similarly if the vertical construction methods are consistent then the vertical geometry can be
solved, and the vertical geometry expressed in terms of consecutive segments (lines, arcs,
parabolas) that are easily understood and drawn.

Unlike the alignment, the super alignment stores both the construction methods (the parts)
and the resulting vertices and segments (lines, arcs, transitions etc.) that make up the
horizontal and vertical geometry (the data).

For many applications such as uploading to survey data collectors or machine control devices,
only the horizontal data and the vertical data are required, not the construction methods (i.e.
the horizontal and vertical parts). When reading the 12d Ascii of a super alignment, only the
horizontal and vertical data needs to be read in and the constructive methods (the horizontal
and vertical parts) can be skipped over.

/I/i érsttex second \

vertex
/ first segment
| (astraight)
l segment n second segment
\' (only if the string is closed) (anarc)
\
AN
vertex n
segment n-1
(astraight)
vertex 3
Y / segment 3
(astraight)
s/
s
) AN segment 4
~ (atransition)
~
Vertices and Segments Forming the
\ Horizontal Data for a Super Alignment J
2011 12d Ascii Definition for each String Type Page 4067
= = = —— == > T 72



12d Model Reference Manual

Notes

1. Just using the horizontal and vertical data is valid as long as the super alignment
geometry is consistent (and solves) and the horizontal and vertical parts can be created.

There are flags in the 12d Ascii of the super alignment to say that the horizontal and vertical
geometry is consistent and solves.

2. Segments meeting at a common vertex do not have to be tangential although for most road
and rail applications, they should be.

The full 12d Ascii definition of the super alignment is:

string super_alignment {

1
nane string_name
chai nage start_chainage
col our colour_name
style style name
br eakl i ne point or line
cl osed true or false
spiral _type transition_type I/ the spiral_types are clothoid,
/I cubic parabola, westrail-cubic, cubic spira,
I natural clothoid, bloss, sinusoidal and
/I cosinusoidal. Note that some spiral_type’s
/I are non-spiral transitions
val i d_horizontal trueor false /1 if true then the horizontal geometry
/l'is consistent and solves
valid_verti cal true or false /1 if true then the horizontal geometry
/l'is consistent and solves
bl ock of info {
}
bl ock of info {
}
bl ock of info {
}
} /l end of super alignment

where the block of info can be one of more of:
attributes, horizontal_parts, horizontal_data, vertical_parts, vertical_data.
The attributes block has been described in the earlier section “Attributes” .

The structure of the blocks horizontal _parts, horizontal _data which define the horizontal
geometry, and vertical_parts and vertical _data which define the vertical geometry will now be
described in more detail.

For information on horizontal geometry, go to “Horizontal Geometry”
vertical geometry “Vertical Geometry”
Page 4068 12d Ascii Definition for each String Type March 2011



Appendix |

Horizontal Geometry

The horizontal geometry is described by two blocks - the horizontal _parts block and the
horizontal data block.

The horizontal _parts block contains the methods to construct the horizontal geometry such as
float (fillet) an arc of a certain radius between two given lines or create a transition (spiral or non-
spiral transition) between a line and an arc.

If the horizontal construction methods are consistent, then they can be solved to form a string
made up of lines, arcs and transitions. The horizontal _data block is simply a list of the vertices
and segments (lines, arcs etc.) that make up the solved geometry.

If the geometry in the horizontal _parts can be solved and produces a valid horizontal _data block,
then the flag valid_horizontal in the super_alignment block is set to true.

val id_horizontal trueorfalse //trueif thehorizontal geometry can be solved and
I/l hence create avalid horizontal_data

hori zontal parts {/ / methods for creating the horizontal geometry

}

hori zontal data { /I the horizontal segments that make up the solved geometry
}

For information on horizontal_parts, go to the section “Horizontal_parts”
horizontal data “Horizontal_data”

Horizontal parts

The horizontal _parts block describes the methods used to construct the horizontal geometry of
the super alignment. The parts that make up the horizontal geometry are defined in chainage
order from the start to the end of the super alignment.

hori zontal _parts { I/l methods for creating the horizontal geometry
blocks defining the sequential parts
making up the horizontal geometry

Apart from the special case of parts defined by horizontal intersection points and their
accompanying transitions and arcs, the other parts in the horizontal parts block are not
documented.

Horizontal _partsfor defined by IP Method Only

For a horizontal intersection point (HIP) with no transitions or arc defined at that HIP, the part is
defined by:
ip{
id value /Il part id - anumber that is unique for each horizontal and vertical part,
/I and the value of part id isamultiple of 100
X value /I x co-ordinate of the horizontal intersection point
y value /l'y co-ordinate of the horizontal intersection point

For a horizontal intersection point (HIP) with an arc but no transitions defined at that HIP, the part
is defined by

arc {
id value /I part id - a number that is unique for each horizontal and vertical part,
// and the value of part id isamultiple of 100
2011 12d Ascii Definition for each String Type Page 4069



12d Model Reference Manual

r value
X value
y value
}
For a horizontal intersection
defined by
spiral {
id value
r value
I 1 value
| 2 value
X value
y value
}

/I radius of the arc at the HIP
/I x co-ordinate of the HIP
/l'y co-ordinate of the HIP

point (HIP) with an arc and transitions defined at that HIP, the part is

/I part id - a number that is unique for each horizontal and vertical part,
/I and the value of part id isamultiple of 100

/I redius of the arc at the HIP

/[ length of the leading transition at the HIP

/I length of the trailing transition at the HIP

/I x co-ordinate of the HIP

/l'y co-ordinate of the HIP

Note that the transition used in the spiral block is given by spiral_type in the super_alignment

block.

Hence a super alignment with horizontal geometry defined by IP methods only would consist of a
horizontal_parts section with only the above ip, arc and spiral blocks in it.

hori zontal parts {

ip_spiral _arc {

values /l values defining the ip_spiral_arc block
values
}
ip_spiral _arc {
values /l values defining the ip_spiral_arc block
values
}
For example,
Page 4070 12d Ascii Definition for each String Type March 2011



Appendix |

\

1st HIP
HIP only

id 100  <—— ypjiguePart id
y 37239.28824481

M)rizontal_parts {
ip {

Plan View of Super Alignment

}

ip{ <-w——— 2ndHIP
id 200 HIP only
x 43134.36832349
y 37330.26705997

}

_ 3rd HIP
spiral { <= H|pwitharcand

id 300 leading and trailing
r 50 transitions
1130
12 40
x 43336.6595
y 37469.2563
} Super Alignment Being Edited
4th HIP
arc { <« HiPwitharconly

id 400

r75
X 43481.15324268
y 37331.6431906

} 5th HIP

/HIPonIy

id 500
X 43627.02308964
y 37544.94343852

&} Horizontal Partswith I|P Methods Only

ip{

/

Horizontal data
The horizontal data block contains the solved horizontal geometry of the super alignment.

The solved horizontal geometry is made up of a series of (x,y) vertices given in a data_2d block
followed by a geometry data block specifying the geometry of the segments between adjacent
vertices. The segment can be a straight line, an arc, a transition (e.g. a spiral) or a partial
transition.

If the horizontal geometry has n vertices, then there will be (n-1) segments for an open super
alignment or n segments if the super alignment is closed.

The format of the horizontal data block is:

hori zontal _data {

nane
chai nage value

br eakl i ne lineor point

col our colour

style linestyle

cl osed Oor1 /I 0if the string isopen, 1 if itis closed

Page 4071

R —



12d Model Reference Manual

i nterval {
chord_arc value /I chord-to-arc tolerance for curves
di st ance value /I chainage interval to break the geometry up

}

data_2d {
x1l-value yl-value /I co-ordinates of the first vertex
x2-value  y2-value /I co-ordinates of the second vertex

xn-value  yn-value /I co-ordinates of the n-th vertex

}

geonetry_data {
segnment _info_1 {
information on the first segment

}
segment _info_2 {
information on the second segment

segrment _info_n-1 { I/ the last segment if it is open
information on the (n-1) segment

}
segrment _info_n { /I the last segment if it is closed

information on the n-th segment

}
}

where the segment_info blocks are from the following:
() Straight
No parameters are needed for defining a straight segment. The straight block is simply:

straight { /I no parameters are needed for a straight
}

(b) Arc
There are four possibilities for an arc of a given radius placed between two vertices.

We use positive and negative radius, and a flag major which can be set to 1 (on) or off (0) to
differentiate between the four possibilities.

mrcs with +ve radius Arc with major 1 (on) \

Arc with major O (off) (default)

start end
vertex (N v \l vertex
~ _
\ Arc with major 0 (off) (default)

AN

y
Arcs with -ve radius— ~ Arc with major 1 (on)

\ Arcs with same radius but with major on or off /

Ay
«Q
@D
N
o
\'
N
[y
N
o
[ >
&<}
(W)
Q
3.
=
>
=
(@]
=
g
-
)
5
«Q
>
o)
D
z
2
(@]
o0
N
o
'_\
| N



Appendix |

So the arc block is:

arc {
radi us value I radius of the arc (+ve is above the line connecting the vertices)
major Oorl /I 0 is the smaller arc, 1 the larger arc).

}

(c) Spiral - this covers both spiral and non-spiral transitions

There can be a partial transition between adjacent vertices. The partial transition is defined by
the parameters

1 length of the full transition up to the start vertex

rl radius of the transition at the start vertex

al angle in decimal degrees of the tangent to the transition at the start vertex

2 length of the full transition up to the end vertex

r2 radius at the end vertex

a2 angle in decimal degrees of the tangent to the transition at the end vertex

Since a radius can not be zero, a radius of infinity is denoted by zero.

The transition is said to be a /leading transition if the absolute value of the radius is increasing
along the direction of the transition (the transition will tighten). Otherwise it is a trailing
transition.

If a leading transition is a full transition then r1 = 0 and |1 = 0. Similarly if a trailing transition is
a full transition then r2=0and 12 = 0.

For a partial transition, if the coordinates of the start of the full transition are needed then they
can be calculated from I1,r1,al, 12,r2,a2 and the co-ordinates of the start and end vertices.

Note that the radii can be positive or negative. If the radii’'s are positive then a leading
transition will curl to the right (and will be above the line joining the start and end vertices).

-

start of full transition start vertex from the start vertex to
(radiusof "infinity" al = angle of the tangent the end vertex
but will be denoted to the transition at start ver
asaradius of 0) _ r2=radiusat
I1 = length of the end vertex

Example of a Leading Partial Transition with Positive Radii
ki.e. radius increases along the transition /

start partia transition segment between \
vertex the super alignment vertices

/ rl=radiusat

[2 - 11 = the length of transition

full transition before end

the start vertex vertex 12 =Tength of the

full transition up to
end vertex

a2 = angle of the tangent
to the transition at end vertex

The parameters for the spiral block are:

spiral {

type transition_type I any of the transitions supported in 12d

leading 1lorO /' 1 denotes aleading transition, O atrailing transition

1 value /I length of the full transition at start vertex

ri value Il radius at the start vertex

al value I/ angle in decimal degrees of the tangent to the transition

/I a the start vertex

2 value /I length of the full transition at end vertex
March 2011 12d Ascii Definition for each String Type Page 4073
= == — > > 72



12d Model Reference Manual

r2 value /I radius at end vertex
a2 value Il angle in decimal degrees of the tangent to the transition
/I at the end vertex
}
Notes

1. The spiral block covers both spiral and non-spiral transitions.
2. The transitions/spirals supported by 12d Model are:

Select Choice

clothoid

cubic parabola
westrail-cubic
cubic spiral
naktural clothoid
bloss

sinusoidal
cosinusoidal

Clothoid - spiral approximation used by Australian road authorities and Queensland Rail.
Cubic parabola — special transition curve used by NSW railways. Not a spiral.

Westrail cubic — spiral approximating used by WA railways.

Cubic spiral — low level spiral approximation. Only ever used in surveying textbooks.
Natural Clothoid — the proper Euler spiral. Not used by any authority.

Bloss — special transition used by Deutsche Bahn. Not a spiral.

Sinusoidal - special transition. Not a spiral.

Cosinusoidal - special transition. Not a spiral.

Page 4074 12d Ascii Definition for each String Type March 2011
E———— ——— —— —— ———— ———— = = — = > 72



Appendix |

Vertical Geometry

The vertical geometry is described by two blocks - the vertical_parts block and the vertical data
block.

The vertical_parts block contains the methods to construct the vertical geometry such as float
(fit) a parabola of a certain length between two given lines.

If the vertical construction methods are consistent, then they can be solved to form a string made
up of lines, parabolas and arcs. The vertical _data block is simply a list of the vertices and
segments (lines, parabolas and arcs) that make up the solved geometry.

If the geometry in the vertical _parts can be solved and produces a valid vertical _data block, then
the flag valid_vertical in the super_alignment block is set to true.

val id_vertical trueor false///trueif the vertical geometry can be solved and
// hence create avalid vertical_data

vertical _parts { /I methods for creating the vertical geometry
}
vertical data { /I the vertical geometry
}
For information on vertical _parts, go to the section “Vertical_parts”
vertical data “Vertical _data”
Vertical _parts

The vertical _parts block describes the methods used to construct the vertical geometry of the
super alignment. The parts that make up the vertical geometry are defined in chainage order
from the start to the end of the super alignment.

vertical _parts { /I methods for creating the vertical geometry
blocks defining the sequential parts
making up the vertical geometry

Apart from the special case of parts defined by vertical intersection points and their
accompanying parabolas and arcs, the other parts in the vertical_parts block are undocumented.

Vertical_partsfor defined by IP Method Only

For a vertical intersection point (VIP) with no parabola or arc defined at that VIP, the part is
defined by:

ip {
id value /l part id - anumber that is unique for each horizontal and vertical part,
/I and the value of part id isamultiple of 100
X value /I chainage co-ordinate of the VIP
y value I/l height co-ordinate of the VIP
}

For a vertical intersection point (VIP) with a parabola defined by a k value at that VIP, the part is
defined by

kval ue {
id value /Il part id - anumber that is unique for each horizontal and vertical part,
/I and the value of part id isamultiple of 100
k value /I k-value of the parabola at the VIP



12d Model Reference Manual

X value /I chainage co-ordinate of the VIP
y value /I height co-ordinate of the VIP

}
For a vertical intersection point (VIP) with a parabola defined by length at that VIP, the part is
defined by
I ength {
id value /I part id - a number that is unique for each horizontal and vertical part,
/I and the value of part id isamultiple of 100
I value [l length of the parabola at the VIP
X value /I chainage co-ordinate of the VIP
y value /I height co-ordinate of the VIP
}

For a vertical intersection point (VIP) with a parabola defined by an effective radius at that VIP,
the part is defined by

radi us {
id value /I part id - a number that is unique for each horizontal and vertical part,
/I and the value of part id isamultiple of 100
r value /I effective radius of the parabola at the VIP
X value /I chainage co-ordinate of the VIP
y value /I height co-ordinate of the VIP

For a vertical intersection point (VIP) with an asymmetric parabola defined by the start and end
lengths at that VIP, the part is defined by

I ength {
id value [l part id - a number that is unique for each horizontal and vertical part,
/I and the value of part id isamultiple of 100
1 value /I start length of the asymmetric parabola at the VIP
|2 value [/l end length of the asymmetric parabola at the VIP
X value /I chainage co-ordinate of the VIP
y value /I height co-ordinate of the VIP

}
For a vertical intersection point (VIP) with an arc defined by a radius at that VIP, the part is
defined by
arc {
id value [ part id - a number that is unique for each horizontal and vertical part,
[/l and the value of part id isamultiple of 100
r value /I radius of the arc at the VIP
X value /I chainage co-ordinate of the VIP
y value /I height co-ordinate of the VIP
}

Hence a super alignment with vertical geometry defined by IP methods only would consist of a
vertical_parts section with only the above ip, parabola and arc blocks in it.

vertical _parts {

i p_parabol a_arc {
values /l values defining the ip_parabola_arc block

Ay
«Q
@D
N
o
\'
»
[y
N
o
[ >
&<}
(W)
Q
3.
=
>
=
(@]
=
g
-
)
5
«Q
>
o)
D
z
2
(@]
o0
N
o
'_\
| N



Appendix |

values

}

i p_parabol a arc {
values // values defining the ip_parabola_arc block
values

}

}
For example,
vertical_parts { 1st VIP
id 600 <——— yniquePart id

X -50.8459652
y 159.79764161

}

kvalue {
d700
k 1.25
X 38.4627
y 179.2126

}

length{ @——_
id 800
1 50

x 172.61694837
y 154.72967932
}
asymmetric { -g—
id 900
1125
1275
x 270.0182
y 208.1493
}
arc{ -—
id 1000
r 1000
x 424.2402
y 196.5637

}
radius { -4

id 1100
r 200
X 526.7263
y 201.5302
}
ip{ -t
id 1200
X 637.69216273
y 198.71894484

}

-

incrementing by 100

Section View of Super Alignment

Parabola defined
by k value

3rd VIP
Parabola defined
by length

4th VIP
Asymmetric parabola defined
by two lengths

5th VIP
Arcwith radius

Vertical Geometry Being Edited

6th VIP
Parabola defined
by effective radius

7th VIP
VIP only

Vertical Partswith IP Methods Only

/

Page 4077



12d Model Reference Manual

Vertical_data
The vertical _data block contains the solved vertical geometry of the super alignment.

The solved vertical geometry is made up of a series of (chainage,height) vertices given in a
data_2d block followed by a geometry data block specifying the geometry of the segments
between adjacent vertices. The segment can be a straight line, a parabola or an arc.

If the vertical geometry has n vertices, then there will be (n-1) segments for an open super
alignment or n segments if the super alignment is closed.

The format of the vertical data block is:

vertical data {
name "
chai nage value
br eakl i ne lineor point

col our colour
style linestyle
cl osed Oor1l /1 0 if the string isopen, 1 if itis closed
i nterval {
chord_arc value /I chord-to-arc tolerance for curves
di st ance value /I chainage interval to break the geometry up
}
data_2d {
chl-value htl-value /I co-ordinates of the first vertex
ch2-value ht2-value /I co-ordinates of the second vertex
chn-value htn-value /I co-ordinates of the n-th vertex
}

geonetry data {
segnent _info_ 1 {
information on the first segment
}

segnent _info_ 2 {
information on the second segment

segnent _info n-1 { I/ the last segment if it isopen
information on the (n-1) segment

}
segnent _info_n { Il the last segment if it is closed

information on the n-th segment

}
}

where the segment_info blocks are from the following:
(a) Straight
No parameters are needed for defining a straight segment. The straight block is simply:

straight { /I no parameters are needed for a straight
}

(b) Arc

Since vertical geometry can’t go backwards in chainage value, the majors arcs can not be
used and hence there are only possibilities for an arc of a given radius placed between two

5
«Q
@D
IS
o
\'
(0]
IRy
N
o
[ >
8
O
@,
=
=
>
S
g
-
@
S
«Q
>
o)
D
=z
)
(@]
o0
N
o
=



Appendix |

vertices.

We use positive and negative radius to differentiate between the four possibilities.

ﬂrc with +ve radius \

only arc with major O (off) is allowe

start Q end

vertex N y vertex

~ —

~

only the arc with major 0 (off) is allow

(0]

Arc with -ve radius

\ Arcs with same absolute radius J

So the arc block is:

arc {
radi us value I radius of the arc (+ve is above the line connecting vertices)
maj or  value /I this is ignored since only minor arcs are used

}

(c) Parabola

There can be a parabola between adjacent vertices. The parabola is defined by giving the co-
ordinates of the vertical intersection point for the parabola

chainage chainage of the VIP of the parabola
height height of the VIP of the parabola

-

Vertical intersection point given by
2N (chainage,height)
/ >
/ ~
/ ~
/ \. end

start vertex
vertex

\ Example of a Parabola /

The parameters for the parabola block are:

par abol a {
chai nage value I chainage of the VIP of the parabola
hei ght value I height of the VIP of the parabola

}

Please continue to the next section “12d Ascii Definition for Tins”



12d Model Reference Manual

12d Ascii Definition for Tins

Tins (triangulated irregular networks) and Super Tins can be written out and read in from a 12d
Ascii file.

For the 12da definitions of tins go to the section “Tins”

Tins

super tins “Super Tins”

tin {
nane tin_name /I MANDATORY name of the tin when created in 12d Model

time_created text // optional - timetin first created
ti me_updat ed text // optional - timetin last modified
/I Attributes Block:

/I Thisis mainly information used by 12d Model to create the tin.

/I The attributes this block and the Attributes block itself are optional.
/I When atinisread into 12d Model from a12dafile, the styleis used
/I astheTin style.

attributes {

text "style" text Il name of line style for thetin
i nteger "faces 0/1 // 0 non triangle data, 1 triangle data
real "null_l ength" value [l values for null by angle/length
real "null_angle" value /I anglein radians
real "null _conbined_| ength" value
real "null_comnbi ned_angl e" value /[ angleinradians
1 any other attributes
} Il end of attributes block

/I Points Block
1
/I Co-ordinates of the points at the vertices of the triangles

/I The points are implicitly numbered by the order in thelist (starting at point 1).
I
/I The Points Block isMANDATORY

points { Il x y z for each point in the tin
x-value y-value -value I point 1
" " " I point 2
} Il end of points block

/I Triangles Block
I

/I Eachtriangleisgiven as atriplet of the point numbers that make up

/I thetriangle vertices (the point numbers are the implicit position of the points
/[ givenin the Points Block.

/I The order of the triangles is unimportant



Appendix |

/I The Triangles Block is MANDATORY

triangles { /I points making up each triangle
T1-1 T1-2 T1-3 /I point numbers of the 3 vertices of first triangle.
T2-1 T2-2 T-33 /I point numbers of the 3 vertices of second triangle.
} /l end of triangles block

/I Base Colour
/I Thetin has abase colour that is the default colour for al triangles

col our tin_base colour // optional - base colour of the tin

I/ Colours Block

1

/Il Triangles can be given colours other than the base colour by including

/I acoloursblock. The colour for each triangle in then individually given

/I (-1 means base colour). The order is the same as the order of the trianglesin

/I the Triangles Block.
I

/I'1f al the triangles are the base colour, then simply omit the Colours Block

colours {
C1 c2 C3 /I colour for each triangle given in triangle order
C4 C5 C6 C7 /Il colour "-1" means use the base tin colour.

} /l end of colours block

I/l Input Block

I

/I More information about how the tin was created by 12d Model.

/I None of thisinformation is needed when reading atin into 12d Model.
I/ This block can be omitted

i nput { /I data for reconstructing tin from strings
preserve_strings true/false /I if true, preserve breaklines etc.
renove_bubbl es true/false I
weed tin true/false
triangle_data true/false
sort _tin true/false
cell _met hod true/false
nodel s {

" model_name 1" /I name of the first model making up the tin
" model_name 2" /l name of the second model making up the tin
} // end of models block
} // end of input block
} // end of tin ascii definition
12d Ascii Definition for Tins Page 4081



12d Model Reference Manual

Super Tins
super _tin {
name tin_name /I MANDATORY name of the super tin
time_created text I/ optional - time super tin first created
ti me_updat ed text /I optional - time super tin last modified

/I Attributes Block:

/I Thisismainly information used by 12d Model to create the super tin.

/I The attributes in this block and the Attributes block itself are optional.

/' When asuper tinisread into 12d Model from a 12dafile, the styleis used
/I asthe Super Tin style.

attributes {

text "style" text /I name of line style for thetin

Il any other attributes

} /l end of attributes block
[/l Super Tin Colour
/[ The super tin has a base colour

col our tin _base colour // optional - base colour of the super tin
/I Tins Block
1l

/I Thisisthelist of tins that make up the super tin.
/Il Thisblock isMANDATORY

tins { /I'list of tins for the super tin
"tin_name 1" /I name of the first tin making up the super tin
"tin_name 2" /l name of the second tin making up the super tin
} /l end of tins block
} /I end of super tin ascii definition

Please continue to the next section “12d Ascii Definition for Plot Frames” .



Appendix |

12d Ascii Definition for Plot Frames

Plot frames can be written out and read in from a 12d Ascii file.

string plot_franme {

nane frame_name
title file filename
bor der Oor1
Vi ewport Oor1
user title file Oorl
title 1 text
title 2 text
plot _file filename
text _size mm
sheet code text

wi dt h value
hei ght value
scal e value
rotation value
xorigin value
yorigin value
left_margin mm
right _margin mm
top_margin mm
bott om mar gi n mm

pl otter text

col our colour
textstyle textstyle_name



12d Model Reference Manual

12d Ascii Definition for Plot Frames March 2011

Page 4084

,_



	I 12d Ascii File Format
	General Comments about 12d Ascii File
	Attributes
	Commands
	12d Ascii Definition for each String Type
	2d String
	3d String
	4d String
	Alignment String
	Arc String
	Circle String
	Drainage String
	Face String
	Feature String
	Interface String
	Pipe String
	Pipeline String
	Polyline String
	Text String
	Super String
	(a) blocks defining the position of the vertices in z, y and z
	(b) blocks defining the geometry of the segments
	(c) a superseded block defining vertices and segment geometry
	(d) extra information for the vertices and/or segments
	(a) Straight
	(b) Arc
	(c) Spiral - this covers both spiral and non-spiral transitions
	1. The spiral block covers both spiral and non-spiral transitions.
	2. The transitions/spirals supported by 12d Model are:

	Super Alignment String
	1. Just using the horizontal and vertical data is valid as long as the super alignment geometry i...
	2. Segments meeting at a common vertex do not have to be tangential although for most road and ra...
	(a) Straight
	(b) Arc
	(c) Spiral - this covers both spiral and non-spiral transitions

	1. The spiral block covers both spiral and non-spiral transitions.
	2. The transitions/spirals supported by 12d Model are:
	(a) Straight
	(b) Arc
	(c) Parabola



	12d Ascii Definition for Tins
	Tins
	Super Tins

	12d Ascii Definition for Plot Frames


