
The Challenge

When undertaking these

construction and development

projects, one of the most important

preliminaries that had to be

considered was utility investigation

and survey, which enabled the

production of a utility model. As per

AS5488-2013, the information

which needed to be provided for

each utility were:

• Quality Level

• Utility Type

• Utility Owner

• Size

• Material

• Configuration

• Date of Installation (if known)

Although most design software

packages have remarkable ways of

visualising the structure of utilities,

integrating the abovementioned set

of information with each component

proved to be a difficult task. This is

the reason why the majority of the

descriptive attributes are usually

recorded in separate datasets. The

efficiency of this kind of system is,

however, very minimal. Analysing

the information as a whole is very

difficult since information will be

coming from different sources.

Because of this, inconsistencies

between datasets are very likely to

12d Solutions Pty Ltd PO Box 351 Narrabeen NSW 2101 Australia

© 2020 12d Solutions Pty Ltd. 12d Model and the 12d logo are trademarks of 12d Solutions Pty Ltd.

Project Summary

A full site survey carried out to enable the

design of new high-voltage Ausgrid

electrical assets. An accurate 3D model of

existing utilities, including drainage, as well

as a basic ground model prepared in order

to generate clash detection reports, long

sections, and cross-sections.

SUI Engineers investigated locations and

depths of underground utilities and marked

information on the ground. Surveyors picked

up this information during the survey process,

and the post-processing team generated the

required deliverables. This included an

accurate 3D model of existing underground

utilities showing pipe/culvert sizes.

Ryde Transmission
Feeder Clash Detection

be found. Also, if editing is necessary,

the information needs to be updated

on each of the sources. These factors

render the system very costly in terms

of both time and money, plus there is a

lot of room for human error. Therefore,

integrating the utility information into

one system was deemed essential for

the Durkin team.

For this specific project, although they

followed the same procedures in

projects involving sub-surface utility

investigation and survey, extensive

underground utility investigations were

performed by SUI Engineers along the

roads and footpaths within the scope

of the project area. They opened every

utility pit and traced the conduits

running along them using GPR and

EM methods. Then, they marked the

location of each utility on the ground

together with corresponding

information such as depth, utility type,

asset owner, configuration, pipe

diameter/culvert dimensions, material,

etc. To acquire the necessary data for

creating a 3D model, Durkin surveyors

would then pick up the location of

these utilities through the ground

markings, and input the corresponding

information as string attributes. Data

from total stations would then be

processed in Magnet Tools. In

preceding projects, survey data were

imported in Genio format, however,

attribute data is lost during 12d Model

Durkin Construction Pty Ltd
SUI Locating and Survey
Requirements for Ryde
Transmission Feeder Clash
Detection

12d DIMENSIONS:

• Drafting

For more information

To find out more about how you can create

better designs faster with the 12d Model

solution for civil engineering design, visit

www.12d.com.

Australasia: Sydney

P: sales@12d.com

M: +61 2 9970 7117

CASE STUDY

Resulting labels after using String Labelling macro

import. With the advice of 12d Model Sales/Training

experts (Extra Dimension Solutions (ExDS), they started

to export datasets in SDR format to retain string

attributes. Thus, the problem of having separate datasets

for string properties and descriptive attributes was

solved. However, there were still a lot of flaws in this kind of

system.

Data Validation

String vertex attributes were recorded as per ground

markings. However, there were quite a few inconsistencies

with the attributes.

• For all the vertices running along a string, the

attributes Type, Asset Owner, Material, Configuration and

Pipe Diameter should be constant as they represent a single

utility.

• Quality Level and Depth should make sense. QL-A is

when the attributes and location of the utility are directly

measured/observed. QL-B is when it is located through

electromagnetic pipe and cable locators, sondes or flexi-

trace, ground penetrating radar or acoustic pulse equipment.

QL-C is when an interpretation of the approximate location is

made using a combination of existing records or visible

evidence during site survey. Finally, QL-D is when the

location and attributes of a utility is obtained based from

existing records, cursory site inspection or anecdotal

evidence. Therefore, a QL-D point cannot have a value for

the Depth attribute. Likewise, QL-A and QL-B points should

have corresponding Depth values. Thus, the second problem

emerges. If each vertex of every string had to be checked for

blunders, it would again consume an unreasonable amount

of time.

String Labelling

The other issue here was finding a way to fully customise the

resulting labels from the 12d Model Label Mapfile. It was

essential that the labels be of the same colour as that of the

strings they represented. It was also important that the labels

be placed on and of similar alignment/rotation angle with the

longest segment, especially on a project wherein the utilities

are very congested on footpaths. Changing the colours and

alignments of these labels would take a great deal of time,

and would be very problematic and confusing as the strings

are running along the same direction too close to each other.

Looking ahead, the team at Durkin realised they’d have a lot

more projects that would require the same post-processing

procedures, and doing all of this manually would definitely be

unfavourable. Finding the right solutions was therefore

crucial.

The Solution

Neil Perol of Durkin Construction said: “Aside from having

strong design and visualisation capabilities, 12d Model is also

packed with a powerful programming language which allows

users to build their own programs in the form of a Macro

Language (4DML). With a vast number of intrinsic functions

and an extremely helpful manual that sets out syntax and

restrictions, users with basic background of C++ or any other

programming language can easily create their own

applications as the operations require. I started using 12d

Model mid-January 2018, and in less than a month, I was

already creating my own 12d Model applications through

Macro Programming.”

JUNK Model Pre-processing Macro

All the abovementioned issues with automating repetitive

tasks were solved by writing and utilising 12d Model Macros.

Under the supervision of our Geospatial Manager, Mr Perol

created three different macros for each of those drawbacks.

The first, Junk Model Pre-processing macro, is intended to

iterate over all strings in the JUNK model, change the string

names, line styles and colours as per RMS Customisation,

and assign them to the corresponding models (per string

name). When the macro is compiled and run, the macro

panel opens. The user selects the JUNK model in the model

input widget. The process would only run if the user chooses

the model named “JUNK”, no matter what the prefix is (but it

should not have a postfix). This is to prevent unwanted

processing of other existing models. Before clicking on the

Process button, the user should also input the desired prefix

for resulting models. This ensures organisation between

existing models and child models.

When the process button is clicked, the iteration begins.

Current string names are concatenated with the first integer/s

of the string ‘no attribute’, following the necessary conditions.

Therefore, a string named ‘U’, for example, is concatenated

with the first character of the string no attribute. On the other

hand, a string named ‘PT’ would be combined with the first

two characters of the string no attribute. Once the proper

string name is established, everything else can be matched.

The line style and colour can easily be changed using a

function that opens the RMS Mapfile and links the string

name with the key. The last thing that is done inside the

iteration is transferring the string into the correct model,

which is the user-defined prefix plus the string name. With

this macro, hours or (for big projects) days of manual string

segregation are reduced to just a few clicks, at the same time

removing the odds for personal errors.

Attribute Data Validation Macro

 Checking vertex Depth against Quality Level

The second macro that was prepared was the Attribute

Data Validation macro. The script for this macro was

very lengthy compared to the others as there were a lot

of conditional statements, and three different features.

The first part is for validating vertex Depth and Quality

Level attributes. After running the macro, the user first

selects the View where the models to be validated are

shown. When the user clicks on the Check(V) button, a

function with multiple nested loops is executed. The

outer-most loop iterates over all the models included in

the selected view. Inside this loop is another loop that

iterates over all the strings of each model. Finally, there

is the last loop, inside the latter, which iterates over all

the vertices of each string of every model. The Depth

and Quality Level attributes are checked for each vertex.

If an anomaly is detected (i.e. QL-D with depth or QL-A

without depth), the function will add, to the vertex, an

attribute called Error which indicates the inconsistency.

The function will also create a text string which shows

the quality level and depth for the erroneous vertex.

These text strings are assigned to the Vertex Errors

model. After every single vertex is accounted for, the

iteration’s end and the Vertex Errors model are added to

the selected view. This allows for easily pinpointing

erroneous vertices, instead of checking them all

manually one by one. There is also a Clear(V) button

that enables the user to delete all Error attributes along

with the Vertex Errors model.

 Transferring Vertex Attributes to String Attributes

The next feature of this macro is for transferring vertex

attributes to string attributes, which is very important for

automated labelling. The Transfer button runs a function

that checks all the vertices and whichever has a value

for that specific attribute will be taken as a string

attribute. For example, if the

Type attribute is found on the

second vertex while the Asset

Owner attribute is found on

the third vertex, the function

will take both of these values

as string attributes. Note that

the function checks vertices

chronologically. The moment it

finds an acceptable value, it

will ignore the rest of the

remaining vertices. This is

done for all the strings of each

model on the selected view.

There is a Clear Attributes

button which undoes this

operation.

 Validating String Attributes and Checking Vertex

Attributes’ Consistency

The last feature of this macro is for checking the string

attributes. For this part, a lot of conditions are expected

to be met; otherwise, a list of errors shall be created.

Again, a triple-nested loop is run when the user clicks on

the Check(S) button to check all vertices of each string.

Attributes such as Type, Asset Owner and Material are

expected to be constant throughout the string.

Therefore, if two or more vertices have different values

for these attributes, an error shall be added to the list of

errors. After checking the consistency of vertex

attributes, string attributes are then validated. A pool of

values for each attribute was first created. If the value for

a specific attribute is not found in the list of allowable

values, an error shall be added to the list of errors. For

example, a string named ‘EU’ should have ‘Electricity’ as

Type and cannot have ‘Jemena’ as the Asset Owner

since ‘Jemena’ is not in the list of allowable Asset Owner

values for a string with ‘EU’ as key. At the end of each

string iteration, the list of errors is added to the attributes

as Errors. A text string showing the list of errors is also

created in the first vertex of the string under the String

Errors model which is added to the selected view after

all strings are accounted for. This allows us to easily

pinpoint the errors. There is also a Clear(S) button that

enables the user to delete all Errors attributes along with

the String Errors model.

String Labelling Macro

The last macro is for labelling each utility string based

on attributes. After execution, the macro panel opens.

The user then chooses the view containing the models

to be labelled, as well as the prefix for resulting label

models. When the Label button is clicked, the macro

iterates over each string of every model for the selected

view. By looking into string attributes, it creates a text

variable which would eventually be the value for the

label. When the text value is set, the macro then creates

a text string containing the label. The colour is set based

on the utility being labelled (i.e. EU is coloured red). The

next task is to find the longest segment of the string and

find its midpoint where the

label would eventually be

positioned. The angle of the

text will be the same as that

of the segment, unless it is

between 90 and 270 degrees

where it would be of reverse

direction to avoid upside-

down texts (see headline

image on p.1 for a sample

result). The only problem left

is when the labels get too

congested; we have to

manually organise to make

the plan more visually

appealing. The good thing is

that It would be a lot easier to

re-organise congested labels as they follow the same

colour and the same angle as the strings they represent.

All of the macros that were created have message box

widgets at the bottom of their respective panels. These

widgets show processing status, as well as error-

handling prompts. The string labelling and attribute data

validation macros both have Info buttons which opens

text boxes that show information regarding the macro.

The Result

Mr Perol feels that: “Macro Programming has proven

itself to be a very powerful tool in automating repetitive

and conditional tasks. It gives 12d Model immense

versatility and efficiency in doing sophisticated

operations. I am sure that I would be making more

macros that would make our processes faster, and our

datasets more reliable. With this, we now have a highly

efficient integrated system for utility modelling.

Descriptive attributes are embedded on each utility

string and post-processing is almost fully-automated.

This makes our procedures a lot simpler, our datasets

easier to manipulate, and at the same time greatly

reducing time and monetary costs.”

Australasia: Sydney

P: sales@12d.com

M: +61 2 9970 7117

12d Solutions Pty Ltd

PO Box 351 Narrabeen

NSW 2101 Australia

© 2020 12d Solutions Pty Ltd

